Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 19;282(3):1788-96.
doi: 10.1074/jbc.M607065200. Epub 2006 Oct 23.

Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2

Affiliations
Free article

Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2

Utta Berchner-Pfannschmidt et al. J Biol Chem. .
Free article

Abstract

The transcription factor complex hypoxia-inducible factor 1 (HIF-1) plays a crucial role in cellular adaptation to low oxygen availability. O(2)-dependent HIF prolyl hydroxylases (PHDs) modify HIF-1alpha, which is sent to proteasomal degradation under normoxia. Reduced activity of PHDs under hypoxia allows stabilization of HIF-1alpha and induction of HIF-1 target gene expression. Like hypoxia, nitric oxide (NO) was found to inhibit normoxic PHD activity leading to HIF-1alpha accumulation. In contrast under hypoxia, NO reduced HIF-1alpha levels due to enhanced PHD activity. Herein, we studied the role of NO in regulating PHD expression and the consequences thereof for HIF-1alpha degradation. We report a biphasic response of HIF-1alpha and PHDs to NO treatment both under normoxia and hypoxia. In the early phase, NO inhibits PHD activity that leads to HIF-1alpha accumulation, whereas in the late phase, increased PHD levels reduce HIF-1alpha. NO induces expression of PHD2 and -3 mRNA and protein under normoxia and hypoxia in a strictly HIF-1-dependent manner. NO-treated cells with elevated PHD levels displayed delayed HIF-1alpha accumulation and accelerated degradation of HIF-1alpha upon reoxygenation. Subsequent suppression of PHD2 and -3 expression using small interfering RNA revealed that PHD2 was exclusively responsible for regulating HIF-1alpha degradation under NO treatment. In conclusion, we identified the induction of PHD2 as an underlying mechanism of NO-induced degradation of HIF-1alpha.

PubMed Disclaimer

Publication types

LinkOut - more resources