Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 29;281(52):40224-35.
doi: 10.1074/jbc.M607461200. Epub 2006 Oct 24.

Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides

Affiliations
Free article

Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides

Vera P Pisareva et al. J Biol Chem. .
Free article

Abstract

Eukaryotic translation termination is mediated by two release factors: eRF1 recognizes stop codons and triggers peptidyl-tRNA hydrolysis, whereas eRF3 accelerates this process in a GTP-dependent manner. Here we report kinetic analysis of guanine nucleotide binding to eRF3 performed by fluorescence stopped-flow technique using GTP/GDP derivatives carrying the fluorescent methylanthraniloyl (mant-) group, as well as thermodynamic analysis of eRF3 binding to unlabeled guanine nucleotides. Whereas the kinetics of eRF3 binding to mant-GDP is consistent with a one-step binding model, the double-exponential transients of eRF3 binding to mant-GTP indicate a two-step binding mechanism, in which the initial eRF3.mant-GTP complex undergoes subsequent conformational change. The affinity of eRF3 for GTP (K(d), approximately 70 microM) is about 70-fold lower than for GDP (K(d), approximately 1 microM) and both nucleotides dissociate rapidly from eRF3 (k(-1)(mant-GDP) approximately 2.4 s(-1); k(-2)(mant-GTP) approximately 3.3 s(-1)). Whereas not influencing eRF3 binding to GDP, association of eRF3 with eRF1 at physiological Mg(2+) concentrations specifically changes the kinetics of eRF3/mant-GTP interaction and stabilizes eRF3.GTP binding by two orders of magnitude (K(d) approximately 0.7 microM) due to lowering of the dissociation rate constant approximately 24-fold (k(-1)(mant-GTP) approximately 0.14s(-1) approximately 0.14 s(-1)). Thus, eRF1 acts as a GTP dissociation inhibitor (TDI) for eRF3, promoting efficient ribosomal recruitment of its GTP-bound form. 80 S ribosomes did not influence guanine nucleotide binding/exchange on the eRF1 x eRF3 complex. Guanine nucleotide binding and exchange on eRF3, which therefore depends on stimulation by eRF1, is entirely different from that on prokaryotic RF3 and unusual among GTPases.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources