Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan;210(1):16-25.
doi: 10.1002/jcp.20835.

LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions

Affiliations
Review

LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions

Abbas Abdollahi. J Cell Physiol. 2007 Jan.

Abstract

Lost-on-transformation 1 (LOT1) (PLAGL1/ZAC1) is a member of the novel subfamily of zinc-finger transcription factors, designated as PLAG family. The other members in this group include PLAG1 and PLAGL2, which share high homology with each other and with LOT1, particularly in their zinc-finger amino-terminal region. They are structurally similar but functionally different. For example, the LOT1 gene encodes a growth suppressor protein and is localized on human chromosome 6q24-25, a chromosomal region that is frequently deleted in many types of human cancers. The gene is maternally imprinted and is linked to developmental disorders such as growth retardation and transient neonatal diabetes mellitus (TNDM). LOT1 is a target of growth factor signaling pathway(s) and silenced by epigenetic mechanisms, as well as by the loss of heterozygosity in different tumor tissues. PLAG1 is a protooncogene that is localized on chromosome 8q12 and was found to be a target of several types of chromosomal rearrangement including the one identified in pleomorphic adenomas of the salivary gland. Since the discovery of the PLAG family members in 1997, much has been learned about their structure and function, as are summarized in this review. While the available data suggest that these proteins may play important roles in regulating normal physiological functions in the mammals, a great deal more about their signaling pathway(s), potential role in the complex pathologies such as cancer and developmental disorders, and functional relationship between different family members and splice variants still remains to be uncovered.

PubMed Disclaimer

MeSH terms

LinkOut - more resources