Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr 1;146(7):2331-40.

Single amino acid changes in DR and antigen define residues critical for peptide-MHC binding and T cell recognition

Affiliations
  • PMID: 1706393

Single amino acid changes in DR and antigen define residues critical for peptide-MHC binding and T cell recognition

J I Krieger et al. J Immunol. .

Abstract

Single amino acid substitutions of Ag and MHC were used to analyze the fine structure of the influenza hemagglutinin (HA)-derived epitope (HA 307-319) recognized in the context of DR7 molecules by a T cell clone. Putative T cell (HA 308, 310, 311, 313, and 316) and DR (HA 309, 312, and 317) contact residues of the Ag were identified by the use of single amino acid-substituted analogs that were tested for their T cell-activating and DR-binding capacities. The peptide-DR7-T cell interaction was further characterized by the use of a panel of 13 site-directed DR7 mutant transfectants analyzed for their capacity to present Ag to T cells, and for their purified mutant DR7 molecules to bind HA 307-319 or its single amino acid-substituted analogs. Eight mutants lost their Ag-presenting function, whereas only one had any decrease in peptide binding. Finally, for three of the mutants it was possible to correct the deleterious effects of mutation by using a particular single amino acid-substituted analog of the peptide molecule. The observed pattern of complementation led to a model that predicts that the Ag assumes an extended conformation, with a turn, in the binding groove, such that the following residues are in close proximity: DR 86-HA 309, DR 71-HA 312, DR 30-HA 314, and 315.

PubMed Disclaimer

Publication types

LinkOut - more resources