The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family
- PMID: 17065611
- PMCID: PMC1626641
- DOI: 10.1101/gr.5057506
The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family
Abstract
The honey bee genome sequence reveals a remarkable expansion of the insect odorant receptor (Or) family relative to the repertoires of the flies Drosophila melanogaster and Anopheles gambiae, which have 62 and 79 Ors respectively. A total of 170 Or genes were annotated in the bee, of which seven are pseudogenes. These constitute five bee-specific subfamilies in an insect Or family tree, one of which has expanded to a total of 157 genes encoding proteins with 15%-99% amino acid identity. Most of the Or genes are in tandem arrays, including one with 60 genes. This bee-specific expansion of the Or repertoire presumably underlies their remarkable olfactory abilities, including perception of several pheromone blends, kin recognition signals, and diverse floral odors. The number of Apis mellifera Ors is approximately equal to the number of glomeruli in the bee antennal lobe (160-170), consistent with a general one-receptor/one-neuron/one-glomerulus relationship. The bee genome encodes just 10 gustatory receptors (Grs) compared with the D. melanogaster and A. gambiae repertoires of 68 and 76 Grs, respectively. A lack of Gr gene family expansion primarily accounts for this difference. A nurturing hive environment and a mutualistic relationship with plants may explain the lack of Gr family expansion. The Or family is the most dramatic example of gene family expansion in the bee genome, and characterizing their caste- and sex-specific gene expression may provide clues to their specific roles in detection of pheromone, kin, and floral odors.
Figures




Similar articles
-
Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera).Genome Res. 2006 Nov;16(11):1404-13. doi: 10.1101/gr.5075706. Epub 2006 Oct 25. Genome Res. 2006. PMID: 17065610 Free PMC article.
-
The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis.Insect Mol Biol. 2010 Feb;19 Suppl 1:121-36. doi: 10.1111/j.1365-2583.2009.00979.x. Insect Mol Biol. 2010. PMID: 20167023
-
Identification of Complete Repertoire of Apis florea Odorant Receptors Reveals Complex Orthologous Relationships with Apis mellifera.Genome Biol Evol. 2016 Sep 26;8(9):2879-2895. doi: 10.1093/gbe/evw202. Genome Biol Evol. 2016. PMID: 27540087 Free PMC article.
-
The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera.Genome Res. 2006 Nov;16(11):1422-30. doi: 10.1101/gr.4549206. Epub 2006 Oct 25. Genome Res. 2006. PMID: 17065616 Free PMC article.
-
A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera.Prog Neurobiol. 2006 Sep;80(1):1-19. doi: 10.1016/j.pneurobio.2006.07.005. Prog Neurobiol. 2006. PMID: 17070981 Review.
Cited by
-
Differential expression of two novel odorant receptors in the locust (Locusta migratoria).BMC Neurosci. 2013 Apr 22;14:50. doi: 10.1186/1471-2202-14-50. BMC Neurosci. 2013. PMID: 23607307 Free PMC article.
-
Transcriptome analysis of the Asian honey bee Apis cerana cerana.PLoS One. 2012;7(10):e47954. doi: 10.1371/journal.pone.0047954. Epub 2012 Oct 24. PLoS One. 2012. PMID: 23112877 Free PMC article.
-
Time-Dependent Odorant Sensitivity Modulation in Insects.Insects. 2022 Apr 2;13(4):354. doi: 10.3390/insects13040354. Insects. 2022. PMID: 35447796 Free PMC article. Review.
-
Honeybees learn odour mixtures via a selection of key odorants.PLoS One. 2010 Feb 8;5(2):e9110. doi: 10.1371/journal.pone.0009110. PLoS One. 2010. PMID: 20161714 Free PMC article.
-
How do moth and butterfly taste?-Molecular basis of gustatory receptors in Lepidoptera.Insect Sci. 2020 Dec;27(6):1148-1157. doi: 10.1111/1744-7917.12718. Epub 2019 Sep 12. Insect Sci. 2020. PMID: 31433559 Free PMC article. Review.
References
-
- Ai H., Kanzaki R., Kanzaki R. Modular organization of the silkmoth antennal lobe macroglomerular complex revealed byvoltage-sensitive dye imaging. J. Exp. Biol. 2004;207:633–644. - PubMed
-
- Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Zhang J., Zhang Z., Miller W., Lipman D.J., Zhang Z., Miller W., Lipman D.J., Miller W., Lipman D.J., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. - PMC - PubMed
-
- Berg B.G., Galizia C.G., Brandt R., Mustaparta H., Galizia C.G., Brandt R., Mustaparta H., Brandt R., Mustaparta H., Mustaparta H. Digital atlases of the antennal lobe in two species of tobacco budworm moths, the Oriental Helicoverpa assulta (male) and the American Heliothis virescens (male and female) J. Comp. Neurol. 2002;446:123–134. - PubMed
-
- Brockmann A., Brückner D., Brückner D. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera. Naturwissenschaften. 2001;88:78–81. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources