Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006:152:125-141.
doi: 10.1159/000096320.

Tonicity-dependent regulation of osmoprotective genes in mammalian cells

Affiliations
Review

Tonicity-dependent regulation of osmoprotective genes in mammalian cells

Joan D Ferraris et al. Contrib Nephrol. 2006.

Abstract

Cells in the renal medulla are normally exposed to levels of NaCl that are extremely high and that vary with concentration of the urine. Such high levels of NaCl cause cellular perturbations, including increased DNA double-strand breaks, increased oxidation of DNA and proteins, and cytoskeletal alterations. Despite these perturbations the cells are able to survive and function because of osmoprotective responses that include accumulation of compatible organic osmolytes and increased abundance of heat shock proteins and water channels. Many of the responses are initiated by increased gene transcription, directed by the transcription factor TonEBP/OREBP. Here, we review the sensors of hypertonicity, the signaling pathways to TonEBP/OREBP, and the ways in which it is activated to increase transcription. Multiple signals are involved, including some that arise directly from the cellular perturbations caused by hypertonicity. Although the combination of these signals is necessary for full osmotic activation of TonEBP/OREBP, no one of them, alone, is sufficient. We conclude that hypertonicity profoundly alters the state of cells, providing numerous interrelated inputs to the osmoregulatory network.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources