Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 13;580(26):6169-74.
doi: 10.1016/j.febslet.2006.10.017. Epub 2006 Oct 17.

A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine

Affiliations
Free article

A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine

Zhen-Hui Zhang et al. FEBS Lett. .
Free article

Abstract

Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. Based on the idea of coarse-grained description and grouping in physics, a new feature extraction method with grouped weight for protein sequence is presented, and applied to apoptosis protein subcellular localization prediction associated with support vector machine. For the same training dataset and the same predictive algorithm, the overall prediction accuracy of our method in Jackknife test is 13.2% and 15.3% higher than the accuracy based on the amino acid composition and instability index. Especially for the else class apoptosis proteins, the increment of prediction accuracy is 41.7 and 33.3 percentile, respectively. The experiment results show that the new feature extraction method is efficient to extract the structure information implicated in protein sequence and the method has reached a satisfied performance despite its simplicity. The overall prediction accuracy of EBGW_SVM model on dataset ZD98 reach 92.9% in Jackknife test, which is 8.2-20.4 percentile higher than other existing models. For a new dataset ZW225, the overall prediction accuracy of EBGW_SVM achieves 83.1%. Those implied that EBGW_SVM model is a simple but efficient prediction model for apoptosis protein subcellular location prediction.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources