A second paradigm for gene activation in bacteria
- PMID: 17073752
- DOI: 10.1042/BST0341067
A second paradigm for gene activation in bacteria
Abstract
Control of gene expression is key to development and adaptation. Using purified transcription components from bacteria, we employ structural and functional studies in an integrative manner to elaborate a detailed description of an obligatory step, the accessing of the DNA template, in gene expression. Our work focuses on a specialized molecular machinery that utilizes ATP hydrolysis to initiate DNA opening and permits a description of how the events triggered by ATP hydrolysis within a transcriptional activator can lead to DNA opening and transcription. The bacterial EBPs (enhancer binding proteins) that belong to the AAA(+) (ATPases associated with various cellular activities) protein family remodel the RNAP (RNA polymerase) holoenzyme containing the sigma(54) factor and convert the initial, transcriptionally silent promoter complex into a transcriptionally proficient open complex using transactions that reflect the use of ATP hydrolysis to establish different functional states of the EBP. A molecular switch within the model EBP we study [called PspF (phage shock protein F)] is evident, and functions to control the exposure of a solvent-accessible flexible loop that engages directly with the initial RNAP promoter complex. The sigma(54) factor then controls the conformational changes in the RNAP required to form the open promoter complex.
Similar articles
-
Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting.EMBO J. 2004 Oct 27;23(21):4253-63. doi: 10.1038/sj.emboj.7600406. Epub 2004 Oct 7. EMBO J. 2004. PMID: 15470504 Free PMC article.
-
Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation.J Mol Biol. 2008 Jan 4;375(1):43-58. doi: 10.1016/j.jmb.2007.10.045. Epub 2007 Oct 23. J Mol Biol. 2008. PMID: 18005983
-
Sigma54-dependent transcription activator phage shock protein F of Escherichia coli: a fragmentation approach to identify sequences that contribute to self-association.Biochem J. 2004 Mar 15;378(Pt 3):735-44. doi: 10.1042/BJ20031464. Biochem J. 2004. PMID: 14659000 Free PMC article.
-
Sigma and RNA polymerase: an on-again, off-again relationship?Mol Cell. 2005 Nov 11;20(3):335-45. doi: 10.1016/j.molcel.2005.10.015. Mol Cell. 2005. PMID: 16285916 Review.
-
Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription.Curr Opin Struct Biol. 2007 Feb;17(1):110-6. doi: 10.1016/j.sbi.2006.11.002. Epub 2006 Dec 6. Curr Opin Struct Biol. 2007. PMID: 17157497 Review.
Cited by
-
Regulation and action of the bacterial enhancer-binding protein AAA+ domains.Biochem Soc Trans. 2008 Feb;36(Pt 1):89-93. doi: 10.1042/BST0360089. Biochem Soc Trans. 2008. PMID: 18208392 Free PMC article.
-
Nitric oxide-responsive interdomain regulation targets the σ54-interaction surface in the enhancer binding protein NorR.Mol Microbiol. 2010 Sep;77(5):1278-88. doi: 10.1111/j.1365-2958.2010.07290.x. Mol Microbiol. 2010. PMID: 20624215 Free PMC article.
-
Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Dec;69(Pt 12):1384-8. doi: 10.1107/S174430911302976X. Epub 2013 Nov 29. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013. PMID: 24316836 Free PMC article.
-
Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules.Chem Commun (Camb). 2014 Oct 11;50(79):11642-4. doi: 10.1039/c4cc05264a. Chem Commun (Camb). 2014. PMID: 25062273 Free PMC article.
-
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription.Microbiol Mol Biol Rev. 2012 Sep;76(3):497-529. doi: 10.1128/MMBR.00006-12. Microbiol Mol Biol Rev. 2012. PMID: 22933558 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources