Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;32(4):501-15.
doi: 10.1007/s00726-006-0425-8. Epub 2006 Nov 2.

Protein tyrosine nitration in hydrophilic and hydrophobic environments

Affiliations
Review

Protein tyrosine nitration in hydrophilic and hydrophobic environments

S Bartesaghi et al. Amino Acids. 2007.

Abstract

In this review we address current concepts on the biological occurrence, levels and consequences of protein tyrosine nitration in biological systems. We focused on mechanistic aspects, emphasizing on the free radical mechanisms of protein 3-nitrotyrosine formation and critically analyzed the restrictions for obtaining large tyrosine nitration yields in vivo, mainly due to the presence of strong reducing systems (e.g. glutathione) that can potently inhibit at different levels the nitration process. Evidence is provided to show that the existence of metal-catalyzed processes, the assistance of nitric oxide-dependent nitration steps and the facilitation by hydrophobic environments, provide individually and/or in combination, feasible scenarios for nitration in complex biological milieux. Recent studies using hydrophobic tyrosine analogs and tyrosine-containing peptides have revealed that factors controlling nitration in hydrophobic environments such as biomembranes and lipoproteins can differ to those in aqueous compartments. In particular, exclusion of key soluble reductants from the lipid phase will more easily allow nitration and lipid-derived radicals are suggested as important mediators of the one-electron oxidation of tyrosine to tyrosyl radical in proteins associated to hydrophobic environments. Development and testing of hydrophilic and hydrophobic probes that can compete with endogenous constituents for the nitrating intermediates provide tools to unravel nitration mechanisms in vitro and in vivo; additionally, they could also serve to play cellular and tissue protective functions against the toxic effects of protein tyrosine nitration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources