Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;44(10):581-9.
doi: 10.1016/j.plaphy.2006.09.003. Epub 2006 Oct 4.

Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

Affiliations

Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

E T Yakimova et al. Plant Physiol Biochem. 2006 Oct.

Abstract

Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO(4). Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2-3 days which indicates the existence of an adaptation mechanism. Cadmium-induced cell death was alleviated by the addition of sub muM concentrations of peptide inhibitors specific to human caspases indicating that cell death proceeds through a mechanism with similarities to animal programmed cell death (PCD, apoptosis). Cadmium-induced cell death was accompanied by an increased production of hydrogen peroxide (H(2)O(2)) and simultaneous addition of antioxidants greatly reduced cell death. Inhibitors of phospholipase C (PLC) and phospholipase D (PLD) signalling pathway intermediates reduced cadmium-induced cell death. Treatment with the G-protein activator mastoparan and a cell permeable analogue of the lipid signal second messenger phosphatidic acid (PA) induced cell death. Ethylene, while not inducing cell death when applied alone, stimulated cadmium-induced cell death. Application of the ethylene biosynthesis inhibitor aminoethoxy vinylglycine (AVG) reduced cadmium-induced cell death, and this effect was alleviated by simultaneous treatment with ethylene. Together the results show that cadmium induces PCD exhibiting apoptotic-like features. The cell death process requires increased H(2)O(2) production and activation of PLC, PLD and ethylene signalling pathways.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources