Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 2;444(7115):75-8.
doi: 10.1038/nature05231.

Sub-kelvin optical cooling of a micromechanical resonator

Affiliations

Sub-kelvin optical cooling of a micromechanical resonator

Dustin Kleckner et al. Nature. .

Abstract

Micromechanical resonators, when cooled down to near their ground state, can be used to explore quantum effects such as superposition and entanglement at a macroscopic scale. Previously, it has been proposed to use electronic feedback to cool a high frequency (10 MHz) resonator to near its ground state. In other work, a low frequency resonator was cooled from room temperature to 18 K by passive optical feedback. Additionally, active optical feedback of atomic force microscope cantilevers has been used to modify their response characteristics, and cooling to approximately 2 K has been measured. Here we demonstrate active optical feedback cooling to 135 +/- 15 mK of a micromechanical resonator integrated with a high-quality optical resonator. Additionally, we show that the scheme should be applicable at cryogenic base temperatures, allowing cooling to near the ground state that is required for quantum experiments--near 100 nK for a kHz oscillator.

PubMed Disclaimer

Comment in

LinkOut - more resources