Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;34(5):833-44.
doi: 10.1142/S0192415X06004326.

Anti-hyperalgesic and anti-inflammatory effects of the modified Chinese herbal formula Huo Luo Xiao Ling Dan (HLXL) in rats

Affiliations

Anti-hyperalgesic and anti-inflammatory effects of the modified Chinese herbal formula Huo Luo Xiao Ling Dan (HLXL) in rats

Lixing Lao et al. Am J Chin Med. 2006.

Abstract

Chinese herbal medicine has been used for thousands of years in China and other Asian countries to treat a variety of inflammatory diseases. The classic Chinese herbal formula, Huo Luo Xiao Ling Dan (HLXL) is commonly used in traditional Chinese herbal medicine for the treatment of joint pain and other symptoms of arthritis. The present study is an investigation of the effects of a modified HLXL extract on persistent hyperalgesia and edema in rats with peripheral inflammation. Inflammation was induced by injecting complete Freund's adjuvant (CFA) into one hind paw. Four dosages of the extract were compared to a vehicle control. Each was administered intragastrally (i.g.) daily for seven days beginning one day before CFA. Hyperalgesia was assessed using a paw withdrawal latency (PWL) test and edema was determined by measuring paw thickness at pre-CFA and 2 hours, 24 hours, and 5 days post-CFA. Immunohistochemistry was performed 2 hours post-CFA to determine spinal Fos protein expression. Adverse effects of the extract were monitored by observing the animals closely for unusual behavioral changes. Compared to the control, HLXL at the two lower dosages (0.575 g/kg and 1.15 g/kg) were effective in the later stage (day 5) of inflammatory hyperalgesia and edema, while the two higher dosages (2.3 g/kg and 4.6 g/kg) alleviated early stage hind paw inflammation and hyperalgesia and facilitated recovery from paw edema and hyperalgesia during the late stage. HLXL at 2.30 g/kg significantly suppressed Fos expression in laminae I-II, III-IV and V-VI ipsilaterally and in III-IV contralaterally. No significant signs of toxicity or adverse effects were observed. The data suggest that HLXL dosage-dependently attenuates CFA-induced inflammation and hyperalgesia, at least in part by inhibiting noxious transmission at the dorsal horn of the spinal cord.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources