Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Apr;29(4):710-9.
doi: 10.1111/j.1365-3040.2005.01457.x.

Responses of spinach leaf mitochondria to low N availability

Affiliations
Free article
Comparative Study

Responses of spinach leaf mitochondria to low N availability

Ko Noguchi et al. Plant Cell Environ. 2006 Apr.
Free article

Abstract

Low N availability induces carbohydrate accumulation in leaf cells, which often causes suppression of photosynthesis. Under low N supply, excess carbohydrates would be preferentially respired by the non-phosphorylating pathways, such as the alternative oxidase (AOX) and uncoupling protein (UCP), which would suppress the excessive increase in the ratio of C to N (C/N ratio). In leaves, however, responses of these pathways to the low N stress are still unknown. We examined the mitochondrial respiratory pathways in spinach leaves grown at three different N availabilities to clarify whether the respiratory pathways change depending on the N availabilities. With the decrease in N availability, leaf respiratory rates per leaf area decreased, but the rates on the leaf N basis were comparable. Using fumarase activities of whole leaf extracts and isolated mitochondria, we estimated mitochondrial protein contents per leaf N. The contents increased with the decrease in the N availability, that is, at the low N availability, N was preferentially invested into mitochondria. On the mitochondrial protein basis, capacities of cytochrome pathway (CP) and cytochrome c oxidase (COX) were comparable regardless of the N availabilities, whereas both AOX capacity and the amounts of AOX protein increased with the decrease in the N availability. Some enzymes of tricarboxylic acid (TCA) cycle, especially NAD-dependent malic enzyme (NAD-ME), showed higher capacities under lower N. On the other hand, amounts of UCP did not differ amongst the N availabilities. These results indicated that, under low N stress, AOX will be preferentially up-regulated and will efficiently consume excess carbohydrates, which leads to suppressing the rise in the C/N ratio to a moderate level.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources