Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;29(7):1319-28.
doi: 10.1111/j.1365-3040.2006.01512.x.

Involvement of gibberellins in the stem elongation of sun and shade ecotypes of Stellaria longipes that is induced by low light irradiance

Affiliations
Free article

Involvement of gibberellins in the stem elongation of sun and shade ecotypes of Stellaria longipes that is induced by low light irradiance

Leonid V Kurepin et al. Plant Cell Environ. 2006 Jul.
Free article

Abstract

Plants from two ecotypes of Stellaria longipes, alpine (an open, sunny habitat) and prairie (where adjacent plants provide a shaded habitat), were grown under normal and reduced levels of photosynthetically active radiation (PAR). Growth under low PAR is significantly promoted in both ecotypes. When quantified by the stable isotope dilution method, endogenous gibberellins (GAs) (GA1, GA8, GA20, GA19) were significantly elevated under low PAR in both 'sun' and 'shade' ecotypes, as was GA53 in the shade ecotype. Changes in endogenous GA1 levels were significantly correlated with stem growth during a 28 d growth cycle and with relative growth rate (RGR) for height under low PAR for both ecotypes. Interestingly, under low irradiance PAR, changes (both increases and decreases) in GA8, the 2beta-hydroxylated 'inactive' catabolite of GA1, closely parallel bidaily stem growth changes for both ecotypes. Because the significantly greater stem elongation of both ecotypes in response to low irradiance PAR is associated with significant increases in the endogenous levels of five GAs (GA53, GA19, GA1, GA8) in the early 13-hydroxylation GA biosynthesis pathway (measured at days 7,14 and 21), we conclude that the low irradiance PAR has very likely induced an overall increase in GA biosynthesis.

PubMed Disclaimer

Publication types

LinkOut - more resources