Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;5(11):3161-72.
doi: 10.1021/pr060282n.

An initial proteomic analysis of human preterm labor: placental membranes

Affiliations

An initial proteomic analysis of human preterm labor: placental membranes

R Hussain Butt et al. J Proteome Res. 2006 Nov.

Abstract

Human preterm labor (PL) is the single most significant problem in modern Obstetrics and Gynecology, affecting approximately 10% of pregnancies worldwide, constituting the leading cause of perinatal mortality and morbidity, and contributing significantly to chronic childhood disease. Currently, our molecular understanding of PL remains staggeringly inadequate to reliably diagnose or rationally intervene in PL events; several molecular alterations have been implicated in PL, but these have proven of limited value as diagnostic/prognostic markers. The majority of PL events remain spontaneous and unpredictable: critical care emergencies. Here, we apply functional proteomics to dissect molecular mechanisms of human PL. Human placental tissue was collected in clearly differentiated cases of preterm and term labor. Highly refined two-dimensional gel electrophoresis (2DE) was used for protein separation, coupled with automated differential gel image analysis to compare the resulting proteomic maps. For this initial study, only the most important protein differences were selected for further analysis, that is, proteins that were unique to one sample, and absent from the other, with 100% reproducibility across the sample population. In total, 11 such proteins were identified by tandem mass spectrometry, falling into three distinct functional classes: structural/cytoskeletal components, ER lumenal proteins with enzymatic or chaperone functions, and proteins with anticoagulant properties. These expression changes form the groundwork for further molecular investigation of this devastating medical condition. This approach therefore holds the potential not only to define the underlying molecular components, but also to identify novel diagnostic tools and targets for rational drug intervention.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources