Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;29(12):2228-37.
doi: 10.1111/j.1365-3040.2006.01597.x.

The cytosolic Na+ : K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+

Affiliations
Free article

The cytosolic Na+ : K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+

Herbert J Kronzucker et al. Plant Cell Environ. 2006 Dec.
Free article

Abstract

It has long been believed that maintenance of low Na+ : K+ ratios in the cytosol of plant cells is critical to the plant's ability to tolerate salinity stress. Direct measurements of such ratios, however, have been few. Here we apply the non-invasive technique of compartmental analysis, using the short-lived radiotracers 42K+ and 22Na+, in intact seedlings of barley (Hordeum vulgare L.), to evaluate unidirectional plasma membrane fluxes and cytosolic concentrations of K+ and Na+ in root tissues, under eight nutritional conditions varying in levels of salinity and K+ supply. We show that Na+ : K+ ratios in the cytosol of root cells adjust significantly across the conditions tested, and that these ratios are poor predictors of the plant's growth response to salinity. Our study further demonstrates that Na+ is subject to rapid and futile cycling at the plasma membrane at all levels of Na+ supply, independently of external K+, while K+ influx is reduced by Na+, from a similar baseline, and to a similar extent, at both low and high K+ supply. We compare our results to those of other groups, and conclude that the maintenance of the cytosolic Na+ : K+ ratio is not central to plant survival under NaCl stress. We offer alternative explanations for sodium sensitivity in relation to the primary acquisition mechanisms of Na+ and K+.

PubMed Disclaimer

Publication types

LinkOut - more resources