Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 2:5:59.
doi: 10.1186/1475-925X-5-59.

3D geometric reconstruction of thoracic aortic aneurysms

Affiliations

3D geometric reconstruction of thoracic aortic aneurysms

Alessandro Borghi et al. Biomed Eng Online. .

Abstract

Background: The thoracic aortic aneurysm (TAA) is a pathology that involves an expansion of the aortic diameter in the thoracic aorta, leading to risk of rupture. Recent studies have suggested that internal wall stress, which is affected by TAA geometry and the presence or absence of thrombus, is a more reliable predictor of rupture than the maximum diameter, the current clinical criterion. Accurate reconstruction of TAA geometry is a crucial step in patient-specific stress calculations.

Methods: In this work, a novel methodology was developed, which combines data from several sets of magnetic resonance (MR) images with different levels of detail and different resolutions. Two sets of images were employed to create the final model, which has the highest level of detail for each component of the aneurysm (lumen, thrombus, and wall). A reference model was built by using a single set of images for comparison. This approach was applied to two patient-specific TAAs in the descending thoracic aorta.

Results: The results of finite element simulations showed differences in stress pattern between the coarse and fine models: higher stress values were found with the coarse model and the differences in predicted maximum wall stress were 30% for patient A and 11% for patient B.

Conclusion: This paper presents a new approach to the reconstruction of an aneurysm model based on the use of several sets of MR images. This enables more accurate representation of not only the lumen but also the wall surface of a TAA taking account of intraluminal thrombus.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Image segmentation samples. Examples of the MR images and segmented contours of Set A1 (figure 1a) and Set A2 (figure 1b) for patient A.
Figure 2
Figure 2
Segmentation results. From left to right: (a) 3D MR angiogram of the TAA of Patient A; (b) aneurysm shape from the segmentation of the image set A1 (wall contours cW in blue and lumen contours cLH in red); (c) lumen of the aneurysm from the segmentation of image set A2 (lumen contours cLM in magenta) (Units in mm).
Figure 3
Figure 3
centreline realignment. Realignment of the centreline (Patient A) (Units in mm).
Figure 4
Figure 4
Lumen shape comparison. Comparison of the lumen shape from set A1 (contour cLH, in red) and set A2 (contour cLM, in magenta) (Patient A) (Units in mm).
Figure 5
Figure 5
Wall thickness retrieval. Example of the wall thickness measurement (Patient B).
Figure 6
Figure 6
Lumen surface for the two different models. Comparison of the lumen surface from set A1 (figure 6a) and set A2 (figure 6b) for Patient A.
Figure 7
Figure 7
CAD models. TAA models for Patient A (figure 7a) and Patient B (figure 7b). The contours are from the MATLAB segmentation, and the surface rendering are from the CAD models, with the wall domain shown in blue and the thrombus domain shown in yellow (Units in mm).
Figure 8
Figure 8
Patient A, stress pattern on the outer wall. Comparison of wall stress patterns on the outer wall for Patient A (AH in figure 8a, AHM in figure 8b); the dotted lines show the sections where transverse stress distributions are resented in figure 9, the triangles show the points of maximum stress (Units in kPa).
Figure 9
Figure 9
Patient A, stress pattern on a horizontal section. Comparison of cross-sectional wall stress distributions at the locations of maximum stress for Patient A (AH in figure 9a, AHM in figure 9b); the triangles show the point of maximum stress (Units in kPa).
Figure 10
Figure 10
Patient B, stress pattern on the outer wall. Comparison of wall stress patterns on the outer wall for Patient B (BH in figure 10a, BHM in figure 10b); the dotted lines show the sections where transverse stress distributions are presented in figure 11, the triangles show the points of maximum stress (Units in kPa).
Figure 11
Figure 11
Patient B, stress pattern on horizontal sections. Comparison of cross-sectional wall stress distributions at two locations for Patient B; sections from model BH are given on the in figure 11a and 11c and sections from model BHM are in figure 11b and 11d. The triangles show the points of maximum stress at the sections (Units in kPa).
Figure 12
Figure 12
Patient B, intra-operator dependence of the segmentation. Comparison of lumen and wall areas from the segmentations performed at three different times (Patient B).

Similar articles

Cited by

References

    1. Joyce JW, Fairbairn JF, 2nd, Kincaid OW, Juergen JL. Aneurysms of the Thoracic Aorta. A Clinical Study with Special Reference to Prognosis. Circulation. 1964;29:176–181. - PubMed
    1. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 2003;37:724–732. - PubMed
    1. Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys. 2001;23:647–655. - PubMed
    1. Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, Chetter IC, McCollum PT. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2004;28:168–176. - PubMed
    1. Papaharilaou Y, Ekaterinaris JA, Manousaki E, Katsamouris AN. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J Biomech. 2006 - PubMed

Publication types