Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;42(1):247-59.
doi: 10.1016/j.yjmcc.2006.08.017. Epub 2006 Nov 1.

Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure

Affiliations

Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure

Andrew E Messer et al. J Mol Cell Cardiol. 2007 Jan.

Abstract

We made quantitative measurements of phosphorylation in troponin isolated from 6 non-failing donor hearts and 6 explanted hearts with end-stage heart failure in SDS-PAGE gels using Pro-Q Diamond phosphoprotein stain. The troponin T phosphorylation level was the same in troponin from failing and non-failing heart (3.1 mol Pi/mol). However, troponin I phosphorylation was significantly lower in failing (0.37+/-0.18 mol Pi/mol) compared with non-failing heart troponin (2.25+/-0.36 mol Pi/mol). Levels of troponin I PKA-dependent phosphorylation, measured with a phosphoserine 23/24-specific antibody, were also significantly lower in failing heart troponin (0.19+/-0.06 mol Pi/mol) compared to non-failing troponin (1.14+/-0.09 mol Pi/mol). We calculate that there is phosphorylation in addition to serine 23/24 of 1.11+/-0.34 mol Pi/mol in non-failing reduced to 0.18+/-0.17 mol Pi/mol in failing heart troponin, attributed to phosphorylation on the PKC sites. To test for the functional role of troponin I phosphorylation, the native troponin I from either non-failing or failing heart troponin was exchanged for a recombinant (unphosphorylated) human cardiac troponin I. Thin filament Ca(2+)-regulatory function was studied with the quantitative in vitro motility assay: thin filaments containing the replaced troponin I resulted in a failing phenotype of a 17-26% reduced sliding speed and an increased Ca(2+)-sensitivity relative to non-failing troponin (EC(50) TnI-exchanged/non-failing=0.57, p<0.001). When exchanged with troponin I phosphorylated with PKA motility parameters reverted to a pattern indistinguishable from non-failing troponin (p=0.35-0.75). We suggest that changes in troponin function can account for the contractile abnormality in failing heart muscle and that the functional changes in troponin are due to reduced phosphorylation of troponin I at the PKA sites.

PubMed Disclaimer

Publication types