Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr 17;1092(2):145-52.
doi: 10.1016/0167-4889(91)90148-q.

Intracellular mechanisms involved in short-term regulation of net protein synthesis in pancreatic acini

Affiliations

Intracellular mechanisms involved in short-term regulation of net protein synthesis in pancreatic acini

P S Perkins et al. Biochim Biophys Acta. .

Abstract

The mechanisms regulating the net synthesis of digestive enzymes during short-term stimulation by agonists were examined in pancreatic acini isolated from the rat. Dispersed pancreatic acini were stimulated for up to 60 min with various concentrations of cholecystokinin octapeptide (CCK-OP), carbachol, A23187, 4 beta-phorbol 12-myristate 13-acetate (PMA). The effects of these agonists on net protein synthesis was determined by measuring the incorporation of [3H]leucine or [35S]methionine into protein. Carbachol, PMA, A23187 and concentrations of CCK-OP of 100 pM and greater caused inhibition of protein synthesis. Fluorography of [35S]methionine labeled acinar cell proteins separated by one-dimensional SDS-polyacrylamide gel electrophoresis demonstrated that the agonists inhibited the synthesis of the digestive enzymes. Northern blot analysis using cDNA probes revealed that CCK-OP, carbachol and PMA did not alter the cellular content of amylase, lipase and elastase mRNA. The protein kinase C inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and staurosporine failed to reverse the inhibitory effects of CCK-OP, carbachol and PMA on protein synthesis. CCK-OP and PMA activated phospholipase A (PLA) which liberated lysophosphatidylcholine (LPC) and free fatty acids from membrane phosphatidylcholine. Exogenously added PLA2 (Naja naja venom) inhibited protein synthesis and increased LPC to a similar extent as CCK and PMA. The results suggest that the inhibitory effects of CCK and carbachol on net protein synthesis are due to their effects on intracellular calcium and PLA-mediated breakdown of phosphatidylcholine rather than protein kinase C activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources