Electrical contacting of redox proteins by nanotechnological means
- PMID: 17084610
- DOI: 10.1016/j.copbio.2006.10.008
Electrical contacting of redox proteins by nanotechnological means
Abstract
Redox enzymes in bioelectronic devices usually lack direct electrical contact with electrodes, owing to the spatial separation of their redox centers from the conductive surfaces by the protein shells. The reconstitution of apo-enzymes on cofactor-functionalized nanostructures associated with electrodes provides a means to align the biocatalysts on the conductive surface and to electrically contact redox enzymes with electrodes. The reconstitution of apo-enzymes on cofactor-functionalized gold nanoparticles or carbon nanotubes has led to effective electrical communication between the redox proteins and the electrodes. Alternatively, the reconstitution of redox enzymes on molecular wires that enable electron tunneling or dynamic charge shuttling represent supramolecular biocatalytic nanostructures exhibiting electrical contact. The bioelectrocatalytic activities of the electrically wired reconstituted enzymes on electrodes have allowed the development of amperometric biosensors and biofuel cell elements.
Similar articles
-
Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase.Phys Chem Chem Phys. 2007 Apr 21;9(15):1809-14. doi: 10.1039/b618422g. Epub 2007 Feb 20. Phys Chem Chem Phys. 2007. PMID: 17415492
-
Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes.Biosens Bioelectron. 2007 May 15;22(11):2508-15. doi: 10.1016/j.bios.2006.09.034. Epub 2006 Nov 1. Biosens Bioelectron. 2007. PMID: 17081743
-
Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes.Biosens Bioelectron. 2009 Feb 15;24(6):1723-9. doi: 10.1016/j.bios.2008.09.002. Epub 2008 Sep 12. Biosens Bioelectron. 2009. PMID: 18951014
-
Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.Biosens Bioelectron. 2007 Apr 15;22(9-10):1841-52. doi: 10.1016/j.bios.2006.09.018. Epub 2006 Oct 30. Biosens Bioelectron. 2007. PMID: 17071070 Review.
-
Electrochemical DNA sensors.Nat Biotechnol. 2003 Oct;21(10):1192-9. doi: 10.1038/nbt873. Nat Biotechnol. 2003. PMID: 14520405 Review.
Cited by
-
Conducting Polymers and Their Applications in Diabetes Management.Sensors (Basel). 2016 Oct 26;16(11):1787. doi: 10.3390/s16111787. Sensors (Basel). 2016. PMID: 27792179 Free PMC article. Review.
-
Peptide nanowires for coordination and signal transduction of peroxidase biosensors to carbon nanotube electrode arrays.Biosens Bioelectron. 2007 Nov 30;23(4):568-74. doi: 10.1016/j.bios.2007.06.019. Epub 2007 Jul 31. Biosens Bioelectron. 2007. PMID: 17881214 Free PMC article.
-
Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads.ACS Appl Mater Interfaces. 2023 Aug 2;15(30):37011-37025. doi: 10.1021/acsami.3c06230. Epub 2023 Jul 21. ACS Appl Mater Interfaces. 2023. PMID: 37477942 Free PMC article.
-
Multiwalled carbon nanotubes coated with cobalt(II) sulfide nanoparticles for electrochemical sensing of glucose via direct electron transfer to glucose oxidase.Mikrochim Acta. 2020 Jan 2;187(1):80. doi: 10.1007/s00604-019-4047-8. Mikrochim Acta. 2020. PMID: 31897753
-
Evidence for distinct electron transfer processes in terminal oxidases from different origin by means of protein film voltammetry.J Am Chem Soc. 2014 Aug 6;136(31):10854-7. doi: 10.1021/ja505126v. Epub 2014 Jul 25. J Am Chem Soc. 2014. PMID: 25054669 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources