Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Dec 22;351(3):582-7.
doi: 10.1016/j.bbrc.2006.10.087. Epub 2006 Oct 27.

Regulation of epithelial ion channels by Rab GTPases

Affiliations
Review

Regulation of epithelial ion channels by Rab GTPases

Sunil K Saxena et al. Biochem Biophys Res Commun. .

Abstract

Epithelial ion channels are crucial to many of life's processes and disruption of their functions can lead to several disorders. Cystic fibrosis, an autosomal recessive disorder, is caused by defects in the biosynthesis or function of the CFTR chloride channel. Similarly, mutations in certain ENaC genes leading to increased or reduced channel activity cause diseases such as Liddle's syndrome or PHA. In order for ion channel proteins to be functional they need to be expressed on the plasma membrane. Thus, molecules that modulate the trafficking of ion channels to and from the membrane are of utmost significance. Among the numerous factors that regulate their functioning is a family of small GTPases known as Rab proteins. While Rabs have always played a pivotal role in membrane trafficking, their diversity of functions and plethora of interacting partners have lately been brought to light. Recent studies reveal that multiple Rab isoforms physically interact with and/or modulate the activity of several ion channels. Rab proteins have the ability to serve as molecular switches and many of the ion channels are regulated differentially by the GTP- or GDP-bound Rab isoforms. This review examines the role of Rab GTPases in the trafficking of ion channels, including CFTR, ENaC, TRPV5/6, and aquaporins, based on recent evidence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources