Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 1;12(21):6367-72.
doi: 10.1158/1078-0432.CCR-06-0836.

Identification of the decay-accelerating factor CD55 as a peanut agglutinin-binding protein and its alteration in non-small cell lung cancers

Affiliations

Identification of the decay-accelerating factor CD55 as a peanut agglutinin-binding protein and its alteration in non-small cell lung cancers

Mitsunori Higuchi et al. Clin Cancer Res. .

Abstract

Purpose: Peanut agglutinin (PNA) recognizes tumor-associated carbohydrates. In this study, we aimed to identify the core protein harboring PNA-binding sugars in the human lung and to explore the relationship with the pathology of primary non-small cell lung cancers (NSCLC).

Experimental design: PNA lectin blotting was used to detect PNA-binding proteins in the microsomal fraction of lung tissue from 24 patients with NSCLC. The 55- to 65-kDa core peptide PNA-binding protein was characterized by enzymatic treatment and identified by immunoprecipitation and affinity chromatography. The expression level and increase in size of the 55- to 65-kDa PNA-binding protein/decay-accelerating factor (DAF) were compared between normal and tumor regions of the tumor tissue by Western blotting and quantitative PCR.

Results: The 55- to 65-kDa PNA-binding protein was observed in human lung. This was a glycosylphosphatidylinositol-anchored membrane protein carrying O-linked carbohydrates. This core protein was identified as DAF, one of the complementary regulatory proteins. DAF was enlarged to 65 to 75 kDa in NSCLC tumor lesions due to sialylation in the sugar moiety. At the transcription level, DAF levels were significantly lower in tumor regions, suggesting its down-regulation in NSCLC cells.

Conclusions: DAF was identified as a new PNA-binding protein in the human lung. The down-regulation and heavy sialylation of DAF was associated with pathology in NSCLC, and these alterations make this protein a potential marker for NSCLC.

PubMed Disclaimer

LinkOut - more resources