Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;18(4):481-93.
doi: 10.1007/s10532-006-9081-7. Epub 2006 Nov 8.

Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community

Affiliations

Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community

Kathryn M Docherty et al. Biodegradation. 2007 Aug.

Abstract

Ionic liquids (ILs) are novel organic salts that have enormous potential for industrial use as green replacements for harmful volatile organic solvents. Varying the cationic components can alter the chemical and physical properties of ILs, including solubility, to suit a variety of industrial processes. However, to complement designer engineering, it is crucial to proactively characterize the biological impacts of new chemicals, in order to fully define them as environmentally friendly. Before introduction of ILs into the environment, we performed an analysis of the biodegradability of six ILs by activated sludge microorganisms collected from the South Bend, Indiana wastewater treatment plant. We examined biodegradability of 1-butyl, 1-hexyl and 1-octyl derivatives of 3-methyl-imidazolium and 3-methyl-pyridinium bromide compounds using the standard Organisation for Economic Cooperation and Development dissolved organic carbon Die-Away Test, changes in total dissolved nitrogen concentrations, and 1H-nuclear magnetic resonance analysis of initial and final chemical structures. Further, we examined microbial community profiles throughout the incubation period using denaturing gradient gel electrophoresis (DNA-PCR-DGGE). Our results suggest that hexyl and octyl substituted pyridinium-based ILs can be fully mineralized, but that imidazolium-based ILs are only partially mineralized. Butyl substituted ILs with either cation, were not biodegradable. Biodegradation rates also increase with longer alkyl chain length, which may be related to enhanced selection of a microbial community. Finally, DGGE analysis suggests that certain microorganisms are enriched by ILs used as a carbon source. Based on these results, we suggest that further IL design and synthesis include pyridinium cations and longer alkyl substitutions for rapid biodegradability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources