Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 8:6:25.
doi: 10.1186/1475-2867-6-25.

Stem cells, senescence, neosis and self-renewal in cancer

Affiliations

Stem cells, senescence, neosis and self-renewal in cancer

Rengaswami Rajaraman et al. Cancer Cell Int. .

Abstract

We describe the basic tenets of the current concepts of cancer biology, and review the recent advances on the suppressor role of senescence in tumor growth and the breakdown of this barrier during the origin of tumor growth. Senescence phenotype can be induced by (1) telomere attrition-induced senescence at the end of the cellular mitotic life span (MLS*) and (2) also by replication history-independent, accelerated senescence due to inadvertent activation of oncogenes or by exposure of cells to genotoxins. Tumor suppressor genes p53/pRB/p16INK4A and related senescence checkpoints are involved in effecting the onset of senescence. However, senescence as a tumor suppressor mechanism is a leaky process and senescent cells with mutations or epimutations in these genes escape mitotic catastrophe-induced cell death by becoming polyploid cells. These polyploid giant cells, before they die, give rise to several cells with viable genomes via nuclear budding and asymmetric cytokinesis. This mode of cell division has been termed neosis and the immediate neotic offspring the Raju cells. The latter inherit genomic instability and transiently display stem cell properties in that they differentiate into tumor cells and display extended, but, limited MLS, at the end of which they enter senescent phase and can undergo secondary/tertiary neosis to produce the next generation of Raju cells. Neosis is repeated several times during tumor growth in a non-synchronized fashion, is the mode of origin of resistant tumor growth and contributes to tumor cell heterogeneity and continuity. The main event during neosis appears to be the production of mitotically viable daughter genome after epigenetic modulation from the non-viable polyploid genome of neosis mother cell (NMC). This leads to the growth of resistant tumor cells. Since during neosis, spindle checkpoint is not activated, this may give rise to aneuploidy. Thus, tumor cells also are destined to die due to senescence, but may escape senescence due to mutations or epimutations in the senescent checkpoint pathway. A historical review of neosis-like events is presented and implications of neosis in relation to the current dogmas of cancer biology are discussed. Genesis and repetitive re-genesis of Raju cells with transient "stemness" via neosis are of vital importance to the origin and continuous growth of tumors, a process that appears to be common to all types of tumors. We suggest that unlike current anti-mitotic therapy of cancers, anti-neotic therapy would not cause undesirable side effects. We propose a rational hypothesis for the origin and progression of tumors in which neosis plays a major role in the multistep carcinogenesis in different types of cancers. We define cancers as a single disease of uncontrolled neosis due to failure of senescent checkpoint controls.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Fate of cells exposed to genotoxins: Immediate effect of exposure to genotoxins is the arrest of cell cycle progression. Cells with lethal damage will undergo necrotic death immediately or may commit immediate or delayed suicide by programmed cell death or apoptosis. Adaptation I. Some cells with minimal damage may re-enter cell cycle after some delay and repair of damage, and multiply normally without any immediate phenotypic changes. It is likely that some of these cells may carry epigenetic alterations and undergo neosis after a latent period of accumulation of additional damage to the genome. Adaptation Ii. Some cells become tetraploid due to cytokinesis failure. Some of them may commit apoptosis, or undergo mitotic catastrophe due to active mitotic checkpoint; such cells often form micronuclei during death. Some of them may undergo successfully multipolar mitosis, giving rise to aneuploid cells, which may not survive to give rise to clonal population of tumor cells. Adaptation III. A major fraction of cells enter a premature senescent phase due to genotoxin-induced DNA damage; by about a week or so, they express senescent markers such as SA-β-gal and SAHF in order to suppress tumor growth; they may become polyploid by endomitosis ad endoreduplication. Most of them may eventually die. Adaptation IV. By about second week after exposure to genotoxins, a few of the tetraploid and polyploid cells with genetic or epigenetic alterations in the senescence pathway may undergo neosis to give rise to aneuploid Raju cells with transient stemness. These are the precursors of primary tumor growth with extended MLS. They mature into tumor cells. At the end of their limited MLS, they reach senescent phase and undergo S/T-neosis and repeat the cycle of extended MLS, senescence, mitotic crisis and neosis several times, thus rejuvenating the supply of resistant (malignant) Raju cells in a highly non-synchronous fashion. (See the text for further details).

References

    1. Kliensmith LJ, Kish VM. Principles of cell and molecular biology. 2. Harper Collins College Publishers; 1996. pp. 517–561.
    1. Hartwell LH. Defects in the cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992;71:543–6. doi: 10.1016/0092-8674(92)90586-2. - DOI - PubMed
    1. Hartwell LH, Kasten MB. Cell cycle control and cancer. Science. 1994;266:1821–8. doi: 10.1126/science.7997877. - DOI - PubMed
    1. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85. doi: 10.1146/annurev.biochem.73.011303.073723. - DOI - PubMed
    1. Sundaram M, Guernsey DL, Rajaraman MM, Rajaraman R. Neosis: A novel type of cell division in cancer. Cancer Biology & Therapy. 2004;3:207–218. - PubMed