Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007;40(9):2012-21.
doi: 10.1016/j.jbiomech.2006.09.016. Epub 2006 Nov 7.

A model-based parametric study of impact force during running

Affiliations
Comparative Study

A model-based parametric study of impact force during running

Amir Abbas Zadpoor et al. J Biomech. 2007.

Abstract

This paper deals with the impact force during foot-ground impact activities such as the running. A previously developed model is used for this study. The model is a lumped-parameter one consisting of four masses connected to each other via linear springs and viscous dampers. A shoe-specific nonlinear function is used for representation of the ground reaction force. The authors have previously showed that the previous version of the model as well as its simulation is incorrect. This paper slightly modifies the previous model so as it is able to produce results in agreement with the experiments. Then, the modified model is simulated for two typical shoe types. A parametric study is also conducted. The parametric study concerns with the effects of masses, mass ratios, stiffness constants, and damping coefficients on the dynamics of the impact. It is shown that the impact forces increase as the rigid and wobbling masses increase. However, the increase in the impact forces is not the same for all the masses. It is found that the impact force increases as the touchdown velocities increase. Simulations imply that the variations of the damping coefficients result in larger variations of the impact force compared to the stiffness. The effect of the variation of gravity on the simulated impact force is also explored. It is concluded that both the first and the second peaks of the impact force are increased with gravity. An in-depth discussion is included to compare results of the current paper with results of other investigators.

PubMed Disclaimer

Publication types

LinkOut - more resources