Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 5;282(1):39-48.
doi: 10.1074/jbc.M607399200. Epub 2006 Nov 8.

The LIM protein, Limd1, regulates AP-1 activation through an interaction with Traf6 to influence osteoclast development

Affiliations
Free article

The LIM protein, Limd1, regulates AP-1 activation through an interaction with Traf6 to influence osteoclast development

Yunfeng Feng et al. J Biol Chem. .
Free article

Abstract

Increasingly a number of proteins important in the regulation of bone osteoclast development have been shown primarily influence osteoclastogenesis under conditions of physiologic or pathologic stress. Why basal osteoclastogenesis is normal and how these proteins regulate stress osteoclastogenic responses, as opposed to basal osteoclastogenesis, is unclear. LIM proteins of the Ajuba/Zyxin family localize to cellular sites of cell adhesion where they contribute to the regulation of cell adhesion and migration, translocate into the nucleus where they can affect cell fate, but are also found in the cytoplasm where their function is largely unknown. We show that one member of this LIM protein family, Limd1, is uniquely up-regulated during osteoclast differentiation and interacts with Traf6, a critical cytosolic regulator of RANK-L-regulated osteoclast development. Limd1 positively affects the capacity of Traf6 to activate AP-1, and Limd1(-/-) osteoclast precursor cells are defective in the activation of AP-1 and thus induction of NFAT2. Limd1(-/-) mice, although having normal basal bone osteoclast numbers and bone density, are resistant to physiological and pathologic osteoclastogenic stimuli. These results implicate Limd1 as a potentially important regulator of osteoclast development under conditions of stress.

PubMed Disclaimer

Publication types

Substances