Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;97(3):2059-66.
doi: 10.1152/jn.00975.2006. Epub 2006 Nov 8.

Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia

Affiliations
Free article

Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia

Kathleen J S Griffioen et al. J Neurophysiol. 2007 Mar.
Free article

Abstract

Although oxidative stress and reactive oxygen species generation is typically associated with localized neuronal injury, reactive oxygen species have also recently been shown to act as a physiological signal in neuronal plasticity. Here we define an essential role for reactive oxygen species as a critical stimulus for cardiorespiratory reflex responses to acute episodic hypoxia in the brain stem. To examine central cardiorespiratory responses to episodic hypoxia, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and synaptic neurotransmission to cardioinhibitory vagal neurons. We show that whereas continuous hypoxia does not stimulate excitatory neurotransmission to cardioinhibitory vagal neurons, acute intermittent hypoxia of equivalent duration incrementally recruits an inspiratory-evoked excitatory neurotransmission to cardioinhibitory vagal neurons during intermittent hypoxia. This recruitment was dependent on the generation of reactive oxygen species. Further, we demonstrate that reactive oxygen species are incrementally generated in glutamatergic neurons in the ventrolateral medulla during intermittent hypoxia. These results suggest a neurochemical basis for the pronounced bradycardia that protects the heart against injury during intermittent hypoxia and demonstrates a novel role of reactive oxygen species in the brain stem.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources