Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;74(2):111-24.
doi: 10.1016/j.antiviral.2006.10.010. Epub 2006 Nov 7.

A dual chamber model of female cervical mucosa for the study of HIV transmission and for the evaluation of candidate HIV microbicides

Affiliations

A dual chamber model of female cervical mucosa for the study of HIV transmission and for the evaluation of candidate HIV microbicides

Yven Van Herrewege et al. Antiviral Res. 2007 May.

Abstract

A dual chamber system was established to model heterosexual HIV transmission. Cell-associated, but not cell-free HIV, added to a confluent layer of cervical epithelial cells in the apical chamber, reproducibly infected monocyte-derived dendritic cells (MO-DC) and CD4(+) T cells in the basal compartment. Only minimal epithelial transmigration of HIV-infected mononuclear cells (HIV-PBMCs) was observed. Most evidence points to transepithelial migration of virus, released from HIV-PBMCs after their activation by epithelial cells. We used this model for evaluation of the therapeutic index of various potentially preventive antiviral compounds, including non-nucleoside reverse transcriptase inhibitors (NNRTIs, including UC781 and various diaryltriazines and diarylpyrimidines), poly-anionic entry inhibitors (including PRO2000, cellulose sulphate, dextrane sulphate 5000 and polystyrene sulphonate) and the fusion inhibitor T-20. The epithelium was pre-treated with compound and incubated with HIV-PBMCs for 24 h. Afterwards the apical chamber was removed and MO-DC/CD4(+) T cell co-cultures were further cultured without compound. NNRTIs, including a TMC120 gel, blocked infection of the sub-epithelial targets at sub-micromolar concentrations. Polyanionic entry inhibitors (up to 100 microg/ml) and T-20 (up to 449 microg/ml) failed to inhibit transmission. Moreover, whereas the NNRTIs used interfered with epithelial integrity with cervical epithelium only at very high concentrations, the evaluated entry inhibitors showed toxicity at concentrations that did not prevent infection.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances