Ascorbate as a biosynthetic precursor in plants
- PMID: 17098753
- PMCID: PMC2802977
- DOI: 10.1093/aob/mcl236
Ascorbate as a biosynthetic precursor in plants
Abstract
Background and aims: l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids.
Scope: The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted.
Conclusions: Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging 'omics' technologies, have provided recent insight to previously under-investigated areas.
Figures
References
-
- Arrigoni O, De Tullio MC. The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. Journal of Plant Physiology. 2000;157:481–488.
-
- Bánhegyi G, Loewus FL. Ascorbic acid catabolism: breakdown pathways in animals and plants. In: Asard H, May JM, Smirnoff N, editors. Vitamin C: functions and biochemistry in animals and plants. London: BIOS Scientific Publishers; 2004. pp. 31–48.
-
- Barth C, De Tullio M, Conklin PL. The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany. 2006;57:1657–1665. - PubMed
-
- Bradford VH, Palmer JK. The metabolism of the organic acids of tobacco leaves. VII. Effect of culture of excised leaves in solutions of (+) tartrate. Journal of Biological Chemistry. 1954;207:275–285. - PubMed
-
- Conklin PL. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell and Environment. 2001;24:383–394.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
