Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;292(3):H1487-97.
doi: 10.1152/ajpheart.00909.2006. Epub 2006 Nov 10.

Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load

Affiliations
Free article

Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load

Gentaro Iribe et al. Am J Physiol Heart Circ Physiol. 2007 Mar.
Free article

Abstract

We developed a dynamic force-length (FL) control system for single intact cardiomyocytes that uses a pair of compliant, computer-controlled, and piezo translator (PZT)-positioned carbon fibers (CF). CF are attached to opposite cell ends to afford dynamic and bidirectional control of the cell's mechanical environment. PZT and CF tip positions, as well as sarcomere length (SL), are simultaneously monitored in real time, and passive/active forces are calculated from CF bending. Cell force and length were dynamically adjusted by corresponding changes in PZT position, to achieve isometric, isotonic, or work-loop style contractions. Functionality of the technique was assessed by studying FL behavior of guinea pig intact cardiomyocytes. End-diastolic and end-systolic FL relations, obtained with varying preload and/or afterloads, were near linear, independent of the mode of contraction, and overlapping for the range of end-diastolic SLs tested (1.85-2.05 micro m). Instantaneous elastance curves, obtained from FL relation curves, showed an afterload-dependent decrease in time to peak elastance and slowed relaxation with both increased preload and afterload. The ability of the present system to independently and dynamically control preload, afterload, and transition between end-diastolic and end-systolic FL coordinates provides a valuable extension to the range of tools available for the study of single cardiomyocyte mechanics, to foster its interrelation with whole heart pathophysiology.

PubMed Disclaimer

Publication types

LinkOut - more resources