The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis
- PMID: 17098907
- PMCID: PMC1797390
- DOI: 10.1128/JB.01397-06
The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis
Abstract
Lipoprotein processing by the type II signal peptidase (SPase II) is known to be critical for intracellular growth and virulence for many bacteria, but its role in rickettsiae is unknown. Here, we describe the analysis of lspA, encoding a putative SPase II, an essential component of lipoprotein processing in gram-negative bacteria, from Rickettsia typhi. Alignment of deduced amino acid sequences shows the presence of highly conserved residues and domains that are essential for SPase II activity in lipoprotein processing. The transcription of lspA, lgt (encoding prolipoprotein transferase), and lepB (encoding type I signal peptidase), monitored by real-time quantitative reverse transcription-PCR, reveals a differential expression pattern during various stages of rickettsial intracellular growth. The higher transcriptional level of all three genes at the preinfection time point indicates that only live and metabolically active rickettsiae are capable of infection and inducing host cell phagocytosis. lspA and lgt, which are involved in lipoprotein processing, show similar levels of expression. However, lepB, which is involved in nonlipoprotein secretion, shows a higher level of expression, suggesting that LepB is the major signal peptidase for protein secretion and supporting our in silico prediction that out of 89 secretory proteins, only 14 are lipoproteins. Overexpression of R. typhi lspA in Escherichia coli confers increased globomycin resistance, indicating its function as SPase II. In genetic complementation, recombinant lspA from R. typhi significantly restores the growth of temperature-sensitive E. coli Y815 at the nonpermissive temperature, supporting its biological activity as SPase II in prolipoprotein processing.
Figures




Similar articles
-
The type II signal peptidase of Legionella pneumophila.Res Microbiol. 2006 Nov;157(9):836-41. doi: 10.1016/j.resmic.2006.06.003. Epub 2006 Jul 12. Res Microbiol. 2006. PMID: 17005379
-
Functional analysis of secA homologues from rickettsiae.Microbiology (Reading). 2005 Feb;151(Pt 2):589-596. doi: 10.1099/mic.0.27556-0. Microbiology (Reading). 2005. PMID: 15699207
-
Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase from Rickettsia rickettsii and Rickettsia typhi.J Bacteriol. 2003 Aug;185(15):4578-84. doi: 10.1128/JB.185.15.4578-4584.2003. J Bacteriol. 2003. PMID: 12867468 Free PMC article.
-
Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi.Ann N Y Acad Sci. 2005 Dec;1063:13-25. doi: 10.1196/annals.1355.003. Ann N Y Acad Sci. 2005. PMID: 16481486 Review.
-
Lipoproteins in bacteria.J Bioenerg Biomembr. 1990 Jun;22(3):451-71. doi: 10.1007/BF00763177. J Bioenerg Biomembr. 1990. PMID: 2202727 Review.
Cited by
-
Novel spore-forming species exhibiting intrinsic resistance to third- and fourth-generation cephalosporins and description of Tigheibacillus jepli gen. nov., sp. nov.mBio. 2024 Apr 10;15(4):e0018124. doi: 10.1128/mbio.00181-24. Epub 2024 Mar 13. mBio. 2024. PMID: 38477597 Free PMC article.
-
Secretome of obligate intracellular Rickettsia.FEMS Microbiol Rev. 2015 Jan;39(1):47-80. doi: 10.1111/1574-6976.12084. Epub 2014 Dec 4. FEMS Microbiol Rev. 2015. PMID: 25168200 Free PMC article. Review.
-
TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi.J Bacteriol. 2012 Sep;194(18):4920-32. doi: 10.1128/JB.00793-12. Epub 2012 Jul 6. J Bacteriol. 2012. PMID: 22773786 Free PMC article.
-
A unique Coxiella burnetii lipoprotein involved in metal binding (LimB).Microbiology (Reading). 2011 Apr;157(Pt 4):966-976. doi: 10.1099/mic.0.046649-0. Epub 2011 Jan 6. Microbiology (Reading). 2011. PMID: 21212117 Free PMC article.
-
Resistome of Staphylococcus aureus in Response to Human Cathelicidin LL-37 and Its Engineered Antimicrobial Peptides.ACS Infect Dis. 2020 Jul 10;6(7):1866-1881. doi: 10.1021/acsinfecdis.0c00112. Epub 2020 May 11. ACS Infect Dis. 2020. PMID: 32343547 Free PMC article.
References
-
- Aliprantis, A. O., R. B. Yang, M. R. Mark, S. Suggett, B. Devaux, J. D. Radolf, G. R. Klimpel, P. Godowski, and A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736-739. - PubMed
-
- Al Mamun, A. A., R. S. Yadava, L. Ren, and M. Z. Humayun. 2000. The Escherichia coli UVM response is accompanied by an SOS-independent error-prone DNA replication activity demonstrable in vitro. Mol. Microbiol. 38:368-380. - PubMed
-
- Andersson, S. G., A. Zomorodipour, J. O. Andersson, T. Sicheritz-Ponten, U. C. Alsmark, R. M. Podowski, A. K. Naslund, A. S. Eriksson, H. H. Winkler, and C. G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133-140. - PubMed
-
- Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340:783-795. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases