Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Nov;6(6):503-12.
doi: 10.2174/187152006778699077.

Tumor physiology and delivery of nanopharmaceuticals

Affiliations
Review

Tumor physiology and delivery of nanopharmaceuticals

Robert B Campbell. Anticancer Agents Med Chem. 2006 Nov.

Abstract

Over the past few decades significant advances have been made in the development of nanopharmaceuticals (including phospholipid and polymer-based therapeutics) against cancer. There is still, however, room for improvement. Today, many researchers are focusing on the development of innovative approaches to selectively deliver drugs to solid tumors, while minimizing insult to healthy tissues. Unfortunately, the majority of these efforts are confronted by physiological barriers that reduce the clinical dose required to effectively manage the disease state. In an effort to develop promising nanopharmaceutical products of the future, we review the most important problems facing drug delivery experts today. We discuss here, the physiological role of solid tumors in delivery and transport of nanopharmaceutical products. The nature of tumors in terms of their unique anatomical structure and functions is also discussed. Finally, an overview of ways to overcome physiological barrier functions and exploit tumor pathogenesis for therapeutic gain is provided.

PubMed Disclaimer