Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 27;410(3):174-7.
doi: 10.1016/j.neulet.2006.08.091. Epub 2006 Nov 13.

Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia

Affiliations

Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia

Wei Liu et al. Neurosci Lett. .

Abstract

We have demonstrated that the activation of p38 mitogen-activated protein kinase (MAPK) in the spinal microglia played an essential role in the development of morphine antinociceptive tolerance. The aim of this study was to investigate whether inhibition of neuronal nitric oxide synthase (nNOS) attenuated tolerance to morphine analgesia by modulating p38 activation in the spinal microglia. It was shown that the selective inhibitor of nNOS, 7-NINA (7-Nitroindazole, sodium salt) (25 microg, i.t.) attenuated not only the development of morphine antinociceptive tolerance, but also the activation of p38 MAPK in the spinal microglia induced by chronic intrathecal administration of morphine. Our results suggest that neuronal NO signals to microglia, leading to the upregulation of microglial phospho-p38 MAPK. Such p38 MAPK activation in microglia is consistent with a potential role in the development of morphine antinociceptive tolerance. We demonstrated for the first time that the inhibition of nNOS attenuated morphine antinociceptive tolerance by reducing p38 MAPK activation in the spinal microglia.

PubMed Disclaimer

MeSH terms

LinkOut - more resources