Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Jun 15;41(12):1941-8.
doi: 10.1016/0006-2952(91)90134-q.

Differential effects of propranolol on the IgE-dependent, or calcium ionophore-stimulated, phosphoinositide hydrolysis and calcium mobilization in a mast (RBL 2H3) cell line

Affiliations
Comparative Study

Differential effects of propranolol on the IgE-dependent, or calcium ionophore-stimulated, phosphoinositide hydrolysis and calcium mobilization in a mast (RBL 2H3) cell line

P Y Lin et al. Biochem Pharmacol. .

Abstract

Our previous studies demonstrated that propranolol, an inhibitor of phosphatidic acid phosphohydrolase (PAPase) (EC 3.1.3.4) blocks the IgE-dependent mediator release from a rat mast (RBL 2H3) cell line. To continue these studies, we examined the ability of propranolol to inhibit the IgE-dependent or ionomycin-mediated phosphoinositide hydrolysis and calcium mobilization in RBL 2H3 cells. RBL 2H3 cells, sensitized with mouse monoclonal anti-trinitrophenol IgE (anti-TNP IgE), were stimulated to release both histamine and peptidoleukotrienes (LT) in response to a suboptimal concentration of trinitrophenol-ovalbumin conjugate (TNP-OVA) or ionomycin. Preincubation of the cells with d,l-propranolol (300 microM) significantly (P less than 0.05) inhibited the effects of both TNP-OVA and ionomycin on histamine and LT release. There was no difference in potency for the different isomers of propranolol, indicating that these effects were not a consequence of an effect on beta 2-adrenergic receptors. TNP-OVA produced a rapid hydrolysis of phosphoinositides resulting in a time-dependent increase in mono- (IP1), di- (IP2), tri- (IP3), and total inositol phosphate production. Ionomycin also produced a rapid increase in total inositol phosphate production; however, this largely reflected an accumulation of IP1. Both secretagogues produced a rapid elevation in cytosolic free calcium ([Ca2+]i); however, the effect of ionomycin maximized within a much shorter time frame than the effect of TNP-OVA. The effects of TNP-OVA on phosphoinositide hydrolysis and increase in [Ca2+]i were inhibited by propranolol over exactly the same concentration range as the effects of this compound on TNP-OVA-stimulated mediator release. In contrast, propranolol had no effect on the increase in [Ca2+]i and phosphoinositide hydrolysis in response to ionomycin. Taken together, these results suggest that PAPase/phospholipase D (PLD) (EC 3.1.4.4) activation may be a prerequisite for both IgE-dependent and ionomycin-stimulated mediator release from RBL 2H3 cells. Although other explanations are possible, the data further suggest that receptor-mediated, but not ionophore-stimulated, phosphoinositide hydrolysis and [Ca2+]i in RBL 2H3 cells may be regulated by a propranolol-sensitive pathway involving possible activation of PAPase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources