Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov-Dec;19(6):371-9.
doi: 10.1080/08941930600985710.

Regulation of nitric oxide synthesis in wounds by IFN-gamma depends on TNF-alpha

Affiliations
Free article

Regulation of nitric oxide synthesis in wounds by IFN-gamma depends on TNF-alpha

Michael Schäffer et al. J Invest Surg. 2006 Nov-Dec.
Free article

Abstract

Macrophage-derived nitric oxide is a critical mediator in wound healing. Its regulation in vivo, however, remains unclear. We hypothesized that interferon (IFN)-gamma plays an important role in the regulation of nitric oxide in wounds. Groups of 12 male IFN-gamma -knockout mice and wild-type controls underwent dorsal skin incision and polyvinyl alcohol sponges were inserted subcutaneously. Mice were sacrificed 10 days later to determine wound breaking strength and reparative collagen deposition. Synthesis of nitric oxide (NO), tumor necrosis factor (TNF)-alpha, and IFN-gamma was measured in the wound. Wound-derived macrophages were tested for NO synthesis in the presence or absence of IFN-gamma, TNF-alpha, and anti-TNF-alpha antibody. In a separate experiment, IFN-gamma -knockout mice and wild-type controls were treated with molsidomine, a nitric oxide donor. It was found that wound collagen deposition and wound breaking strength were impaired in IFN-gamma-knockout mice (p < .05). Impaired healing was reflected in diminished synthesis of TNF-alpha and NO in wounds (p < .05). In vivo treatment with molsidomine reversed impaired healing in IFN-gamma-deficient mice. Ex vivo, addition of IFN-gamma stimulated the synthesis of TNF-alpha and NO in wound-derived macrophages. IFN-gamma -induced NO synthesis by wound-derived macrophages was abolished by anti-TNF-alpha-antibody-treatment, which could be fully reversed by exogenous TNF-alpha. Thus we conclude that IFN-gamma-deficiency impairs wound healing and diminishes NO synthesis in wound-derived macrophages. The stimulatory effect of IFN-gamma on macrophage NO production depends on endogenous TNF-alpha synthesis.

PubMed Disclaimer

MeSH terms

LinkOut - more resources