Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Dec;374(3):177-93.
doi: 10.1007/s00210-006-0115-9. Epub 2006 Nov 14.

Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex

Affiliations
Comparative Study

Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex

T Abekawa et al. Naunyn Schmiedebergs Arch Pharmacol. 2006 Dec.

Abstract

Clozapine (CLZ) can improve both the positive and negative symptoms of treatment-resistant schizophrenia (TRS), which does not respond to typical antipsychotics. This suggests that elucidation of the pharmacological mechanism for CLZ could lead to further clarification of the pathophysiology of TRS. This study examined the effects of CLZ on phencyclidine (PCP)-induced hyperlocomotion and on the acute increases in glutamate levels that occur in the medial prefrontal cortex (mPFC) in order to test the hypothesis that CLZ effect is associated with the simultaneous enhancement of N-methyl-D: -aspartate (NMDA) and dopamine D(1) receptor-mediated neurotransmission. CLZ effect on PCP-induced hyperlocomotion and increases in glutamate levels were examined by using behavioral rating scores and in vivo microdialysis, respectively. CLZ and haloperidol (HAL) dose-relatedly attenuated PCP-induced hyperlocomotion, and concentration-relatedly blocked PCP-induced acute increases in glutamate levels in the mPFC, with the decrease in saline-induced locomotor activity induced by CLZ being much weaker than that induced by HAL. CLZ also blocked, in a dose-related manner, acute increases in glutamate levels in the mPFC that were induced by local perfusion with a competitive NMDA receptor antagonist, CPP, in this region. Although an enhanced blocking effect of the sub-threshold concentration of NMDA perfusion on PCP-induced acute increases in glutamate levels in the mPFC was noted after co-perfusion with a dopamine D(1) receptor agonist, SKF-38393, perfusion with SKF-38393 did not reverse the CLZ blocking of PCP-induced increases in glutamate levels. Therefore, CLZ may block PCP-induced acute increases in glutamate levels in the mPFC by an enhancement of the NMDA receptor-mediated neurotransmission that is not accelerated by an enhanced dopaminergic transmission via dopamine D(1) receptors. This blocking effect may partially explain the CLZ-induced attenuation of PCP-induced hyperlocomotion.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurosci. 1998 Jul 15;18(14):5545-54 - PubMed
    1. Arch Gen Psychiatry. 1988 Sep;45(9):789-96 - PubMed
    1. Prog Neuropsychopharmacol Biol Psychiatry. 2004 Jan;28(1):173-80 - PubMed
    1. Psychopharmacology (Berl). 2003 Sep;169(3-4):215-33 - PubMed
    1. Science. 1998 Aug 28;281(5381):1349-52 - PubMed

Publication types

MeSH terms

LinkOut - more resources