Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity
- PMID: 17103419
- PMCID: PMC3496788
- DOI: 10.1002/bip.20627
Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity
Abstract
The mechanical properties of DNA play a critical role in many biological functions. For example, DNA packing in viruses involves confining the viral genome in a volume (the viral capsid) with dimensions that are comparable to the DNA persistence length. Similarly, eukaryotic DNA is packed in DNA-protein complexes (nucleosomes), in which DNA is tightly bent around protein spools. DNA is also tightly bent by many proteins that regulate transcription, resulting in a variation in gene expression that is amenable to quantitative analysis. In these cases, DNA loops are formed with lengths that are comparable to or smaller than the DNA persistence length. The aim of this review is to describe the physical forces associated with tightly bent DNA in all of these settings and to explore the biological consequences of such bending, as increasingly accessible by single-molecule techniques.
(c) 2006 Wiley Periodicals, Inc.
Figures









Similar articles
-
Spontaneous sharp bending of double-stranded DNA.Mol Cell. 2004 May 7;14(3):355-62. doi: 10.1016/s1097-2765(04)00210-2. Mol Cell. 2004. PMID: 15125838
-
Bending the rules of transcriptional repression: tightly looped DNA directly represses T7 RNA polymerase.Biophys J. 2010 Aug 9;99(4):1139-48. doi: 10.1016/j.bpj.2010.04.074. Biophys J. 2010. PMID: 20712997 Free PMC article.
-
Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar.Curr Opin Struct Biol. 2003 Feb;13(1):40-8. doi: 10.1016/s0959-440x(03)00012-5. Curr Opin Struct Biol. 2003. PMID: 12581658 Review.
-
The bending of DNA in nucleosomes and its wider implications.Philos Trans R Soc Lond B Biol Sci. 1987 Dec 15;317(1187):537-61. doi: 10.1098/rstb.1987.0080. Philos Trans R Soc Lond B Biol Sci. 1987. PMID: 2894688 Review.
-
Intrinsically bent DNA in replication origins and gene promoters.Genet Mol Res. 2008 Jun 24;7(2):549-58. doi: 10.4238/vol7-2gmr461. Genet Mol Res. 2008. PMID: 18752180 Review.
Cited by
-
Cloning and Characterization of a Human Genomic Sequence that Alleviates Repeat-Induced Gene Silencing.PLoS One. 2016 Apr 14;11(4):e0153338. doi: 10.1371/journal.pone.0153338. eCollection 2016. PLoS One. 2016. PMID: 27078685 Free PMC article.
-
High-Resolution Characterization of DNA/Protein Complexes in Living Bacteria.Methods Mol Biol. 2024;2819:103-123. doi: 10.1007/978-1-0716-3930-6_6. Methods Mol Biol. 2024. PMID: 39028504
-
Twist-stretch coupling and phase transition during DNA supercoiling.Phys Chem Chem Phys. 2009 Jun 28;11(24):4800-3. doi: 10.1039/b901646e. Epub 2009 May 14. Phys Chem Chem Phys. 2009. PMID: 19506753 Free PMC article.
-
An effective mesoscopic model of double-stranded DNA.J Biol Phys. 2014 Jan;40(1):1-14. doi: 10.1007/s10867-013-9333-9. Epub 2013 Dec 5. J Biol Phys. 2014. PMID: 24306264 Free PMC article.
-
Supercoiling and looping promote DNA base accessibility and coordination among distant sites.Nat Commun. 2021 Sep 28;12(1):5683. doi: 10.1038/s41467-021-25936-2. Nat Commun. 2021. PMID: 34584096 Free PMC article.
References
-
- Boal DH. Mechanics of the Cell. Cambridge University Press; Cambridge, England: 2002.
-
- Nelson P. Biological Physics: Energy, Information, Life. Freeman; New York: 2004.
-
- McCauley MJ, Williams MC. 2007;85:154–168. - PubMed
-
- Wiggins PA, Heijde Tvd, Moreno-Herrero F, Spakowitz A, Phillips R, Widom J, Dekker C, Nelson PC. Nat Nanotechnol. 2006;1:137–141. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources