Translational frameshifting in the Escherichia coli dnaX gene in vitro
- PMID: 1710356
- PMCID: PMC329457
- DOI: 10.1093/nar/19.9.2457
Translational frameshifting in the Escherichia coli dnaX gene in vitro
Abstract
Production of the gamma subunit of Escherichia coli DNA polymerase III holoenzyme is dependent on a very efficient translational frameshif in the dnaX gene. I used an E. coli in vitro translation system to analyze the mechanism of this frameshifting event. In this system, gamma was produced almost to the same extent as the inframe translation product, tau, suggesting that efficient frameshifting was reproduced in vitro. Coupling with transcription was not necessary for frameshifting. Addition of purified tau or gamma had no effect on the frameshifting process suggesting the absence of direct feedback regulation. By use of mutant genes, a strong pausing site was identified at or very close to the frameshift site. This pausing was apparently caused by a potential stem-loop structure which was previously shown to enhance frameshifting. Thus, enhancement of frameshifting by this putative stem-loop seems to be mediated by the translation pausing at the frameshift site. Despite the apparent structural similarity of the dnaX frameshift site to that of the eukaryotic retroviral genes, dnaX mRNA synthesized in vitro failed to direct the production of gamma in eukaryotic translation systems. This suggests that frameshifting in the dnaX gene depends on components specific to the E. coli translation system.
Similar articles
-
The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting.Proc Natl Acad Sci U S A. 1990 May;87(10):3713-7. doi: 10.1073/pnas.87.10.3713. Proc Natl Acad Sci U S A. 1990. PMID: 2187190 Free PMC article.
-
Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon.Genes Dev. 1992 Mar;6(3):511-9. doi: 10.1101/gad.6.3.511. Genes Dev. 1992. PMID: 1547945
-
Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme.Proc Natl Acad Sci U S A. 1990 Apr;87(7):2516-20. doi: 10.1073/pnas.87.7.2516. Proc Natl Acad Sci U S A. 1990. PMID: 2181440 Free PMC article.
-
Upstream stimulators for recoding.Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1123-9. doi: 10.1139/o95-121. Biochem Cell Biol. 1995. PMID: 8722029 Review.
-
Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs.FEBS Lett. 2019 Jul;593(13):1468-1482. doi: 10.1002/1873-3468.13478. Epub 2019 Jun 20. FEBS Lett. 2019. PMID: 31222875 Free PMC article. Review.
Cited by
-
Ribosome hopping and translational frameshifting are inadequate alternatives to translational attenuation in cat-86 regulation.J Bacteriol. 1991 Dec;173(24):7881-6. doi: 10.1128/jb.173.24.7881-7886.1991. J Bacteriol. 1991. PMID: 1720771 Free PMC article.
-
Prokaryotic ribosomes recode the HIV-1 gag-pol-1 frameshift sequence by an E/P site post-translocation simultaneous slippage mechanism.Nucleic Acids Res. 1995 May 11;23(9):1487-94. doi: 10.1093/nar/23.9.1487. Nucleic Acids Res. 1995. PMID: 7784201 Free PMC article.
-
Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting.J Mol Biol. 2001 Jul 27;310(5):1109-23. doi: 10.1006/jmbi.2001.4823. J Mol Biol. 2001. PMID: 11501999 Free PMC article.
-
Differential response to frameshift signals in eukaryotic and prokaryotic translational systems.Nucleic Acids Res. 1993 Feb 11;21(3):401-6. doi: 10.1093/nar/21.3.401. Nucleic Acids Res. 1993. PMID: 7680118 Free PMC article.
-
Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal.J Mol Biol. 1992 Sep 20;227(2):463-79. doi: 10.1016/0022-2836(92)90901-u. J Mol Biol. 1992. PMID: 1404364 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources