Polymers, drug release, and drug-eluting stents
- PMID: 17107364
- DOI: 10.1111/j.1540-8183.2006.00198.x
Polymers, drug release, and drug-eluting stents
Abstract
Implantable biomaterials mainly serve as physical support devices, carriers for bioactive molecules and guidance for tissue growth. For any application within or outside the cardiovascular area, biomaterials are subject to an extended set of requirements in order to establish safe application. These requirements mainly include acceptable biocompatibility and, if the material is to be degraded within the body, safe degradation characteristics. During degradation, biocompatible polymers are broken down into molecules that are metabolized and removed from the body via normal metabolic pathways. Major applications of these polymers include targeted drug delivery systems, resorbable sutures and orthopedic fixation devices. In the cardiovascular area they include biodegradable cardiovascular stents and drug-eluting stent (DES) coatings. This review focuses on general aspects of local drug delivery by implantable polymeric devices, with special emphasis on drug-eluting stents.
Comment in
-
Global cardiovascular interventions 2006, the XVIIth Frankfurt Course on Cardiovascular Interventions, December 1-2, 2006.J Interv Cardiol. 2006 Dec;19(6):483-4. doi: 10.1111/j.1540-8183.2006.00195.x. J Interv Cardiol. 2006. PMID: 17107361 No abstract available.
Similar articles
-
Coronary stents: looking forward.J Am Coll Cardiol. 2010 Aug 31;56(10 Suppl):S43-78. doi: 10.1016/j.jacc.2010.06.008. J Am Coll Cardiol. 2010. PMID: 20797503 Review.
-
Bioabsorbable and biocompatible stents. Is a new revolution coming?Minerva Cardioangiol. 2008 Oct;56(5):483-91. Minerva Cardioangiol. 2008. PMID: 18813184 Review.
-
The road to bioabsorbable stents: reaching clinical reality?Cardiovasc Intervent Radiol. 2006 Jan-Feb;29(1):11-6. doi: 10.1007/s00270-004-0341-9. Cardiovasc Intervent Radiol. 2006. PMID: 16195840 Review.
-
Current status of biodegradable stents.Cardiol Clin. 1994 Nov;12(4):699-713. Cardiol Clin. 1994. PMID: 7850839 Review.
-
Biodegradable stents.Minerva Cardioangiol. 2008 Apr;56(2):205-13. Minerva Cardioangiol. 2008. PMID: 18319699 Review.
Cited by
-
Similarities and differences in coatings for magnesium-based stents and orthopaedic implants.J Orthop Translat. 2014 Jul;2(3):118-130. doi: 10.1016/j.jot.2014.03.004. Epub 2014 Apr 5. J Orthop Translat. 2014. PMID: 27695671 Free PMC article.
-
Core-Shell Particles: From Fabrication Methods to Diverse Manipulation Techniques.Micromachines (Basel). 2023 Feb 21;14(3):497. doi: 10.3390/mi14030497. Micromachines (Basel). 2023. PMID: 36984904 Free PMC article. Review.
-
Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution.J Control Release. 2007 Nov 6;123(2):100-8. doi: 10.1016/j.jconrel.2007.06.025. Epub 2007 Jul 5. J Control Release. 2007. PMID: 17868948 Free PMC article.
-
Is a biodegradable polymer stent really superior to a durable polymer stent?AsiaIntervention. 2018 Sep 20;4(2):71-73. doi: 10.4244/AIJV4I1A14. eCollection 2018 Sep. AsiaIntervention. 2018. PMID: 36483999 Free PMC article. No abstract available.
-
Sirolimus-eluting dextran and polyglutamic acid hybrid coatings on AZ31 for stent applications.J Biomater Appl. 2015 Nov;30(5):579-88. doi: 10.1177/0885328215596324. Epub 2015 Jul 21. J Biomater Appl. 2015. PMID: 26202889 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical