Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;8(11):719-27.
doi: 10.1097/01.gim.0000245576.47154.63.

Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

Affiliations
Free article

Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

Trilochan Sahoo et al. Genet Med. 2006 Nov.
Free article

Abstract

Purpose: This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies.

Methods: Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome analysis. Array-CGH was performed with DNA directly from amniotic fluid cells with whole genome amplification, on chorionic villus samples with amplification as necessary, and on cultured cells without amplification.

Results: Ninety-eight pregnancies (56 amniotic fluid and 42 CVS specimens) were studied with complete concordance between karyotype and array results, including 5 positive cases with chromosomal abnormalities. There was complete concordance of array results for direct and cultured cell analysis in 57 cases tested by both methods. In 12 cases, the array detected copy number variation requiring testing of parental samples for optimal interpretation. Array-CGH results were available in an average of 6 and 16 days for direct and cultured cells, respectively. Patient acceptance of array-CGH testing was 74%.

Conclusion: This study demonstrates the feasibility of using array-CGH for prenatal diagnosis, including reliance on direct analysis without culturing cells. Use of array-CGH should increase the detection of abnormalities relative to the risk, and is an option for an enhanced level of screening for chromosomal abnormalities in high risk pregnancies.

PubMed Disclaimer

Publication types