Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1
- PMID: 1710937
- PMCID: PMC1281217
- DOI: 10.1016/S0006-3495(91)82268-8
Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1
Abstract
The structure of the membrane bound state of the 178-residue thermolytic COOH-terminal channel forming peptide of colicin E1 was studied by polarized Fourier transform infrared (FTIR) spectroscopy. This fragment was reconstituted into DMPC liposomes at varying peptide/lipid ratios ranging from 1/25-1/500. The amide I band frequency of the protein indicated a dominant alpha-helical secondary structure with limited beta- and random structures. The amide I and II frequencies are at 1,656 and 1,546 cm-1, close to the frequency of the amide I and II bands of rhodopsin, bacteriorhodopsin and other alpha-helical proteins. Polarized FTIR of oriented membranes revealed that the alpha-helices have an average orientation less than the magic angle, 54.6 degrees, relative to the membrane normal. Almost all of the peptide groups in the membrane-bound channel protein undergo rapid hydrogen/deuterium (H/D) exchange. These results are contrasted to the alpha-helical membrane proteins, bacteriorhodopsin, and rhodopsin.
Similar articles
-
Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies.J Biol Chem. 1991 Jul 25;266(21):13537-43. J Biol Chem. 1991. PMID: 1713207
-
A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.Structure. 1997 Mar 15;5(3):443-58. doi: 10.1016/s0969-2126(97)00200-1. Structure. 1997. PMID: 9083117
-
Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel.Protein Sci. 1992 Dec;1(12):1666-76. doi: 10.1002/pro.5560011215. Protein Sci. 1992. PMID: 1284805 Free PMC article.
-
The conformational analysis of peptides using Fourier transform IR spectroscopy.Biopolymers. 1995;37(4):251-63. doi: 10.1002/bip.360370404. Biopolymers. 1995. PMID: 7540054 Review.
-
Channel-forming colicins: translocation (and other deviant behaviour) associated with colicin Ia channel gating.Q Rev Biophys. 1999 May;32(2):189-205. doi: 10.1017/s0033583599003492. Q Rev Biophys. 1999. PMID: 10845238 Review. No abstract available.
Cited by
-
Colicin E1 forms a dimer after urea-induced unfolding.Biochem J. 1999 Jun 15;340 ( Pt 3)(Pt 3):631-8. Biochem J. 1999. PMID: 10359646 Free PMC article.
-
Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra.Biophys J. 1999 Jan;76(1 Pt 1):552-63. doi: 10.1016/S0006-3495(99)77223-1. Biophys J. 1999. PMID: 9876168 Free PMC article.
-
The Pathogenic A116V Mutation Enhances Ion-Selective Channel Formation by Prion Protein in Membranes.Biophys J. 2016 Apr 26;110(8):1766-1776. doi: 10.1016/j.bpj.2016.03.017. Biophys J. 2016. Retraction in: Biophys J. 2021 Dec 7;120(23):5421. doi: 10.1016/j.bpj.2021.11.005. PMID: 27119637 Free PMC article. Retracted.
-
Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins.Protein Sci. 1992 Aug;1(8):1032-49. doi: 10.1002/pro.5560010809. Protein Sci. 1992. PMID: 1338977 Free PMC article.
-
Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban.Biophys J. 1996 Apr;70(4):1728-36. doi: 10.1016/S0006-3495(96)79735-7. Biophys J. 1996. PMID: 8785331 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources