Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 25;193(1):87-93.
doi: 10.1016/0014-2999(91)90204-4.

Effects of idazoxan on dorsal raphe 5-hydroxytryptamine neuronal function

Affiliations

Effects of idazoxan on dorsal raphe 5-hydroxytryptamine neuronal function

J C Garratt et al. Eur J Pharmacol. .

Abstract

The effects of the alpha 2-adrenoceptor antagonist idazoxan on 5-hydroxytryptamine (5-HT) neuronal firing and release have been investigated. Idazoxan, administered i.v. (10 micrograms/kg and 0.5 mg/kg) increased dorsal raphe nucleus (DRN)-5-HT neuronal firing rate in a dose-dependent fashion. At the higher dose, a voltammetric study revealed increases in extracellular 5-HT and 5-hydroxyindole acetic acid (5-HIAA) levels, there was no effect with the lower dose. Intra-raphe administration of idazoxan (1 ng) also elevated the firing rate of 5-HT neurones in the dorsal raphe, suggesting that idazoxan may produce the increase in firing by a direct effect in the DRN. However, microiontophoretic application of idazoxan did not increase the firing rate of 5-HT neurones in the DRN. Thus the increase in the firing rate of 5-HT neurones in the DRN observed with systemic and local administration of idazoxan is probably not due to a direct action of idazoxan on the 5-HT neurone. Possibly the idazoxan acted at alpha 2-adrenoceptors located on noradrenergic terminals thus stimulating noradrenaline release and consequently increased 5-HT activity. Chronic administration of idazoxan (0.8 mg/kg per h for 14 days), using osmotic mini-pumps, caused an elevation in basal firing rate and an attenuation of the inhibitory response of DRN 5-HT neurones to the 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OHDPAT) (10 micrograms/kg i.v.). This finding suggests that chronic infusion with idazoxan leads to desensitisation of the 5-HT1A somatodendritic autoreceptor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources