Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns
- PMID: 1711057
- DOI: 10.1002/cne.903060207
Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns
Abstract
The aim of this study was to provide quantitative descriptions of the branching patterns of basal and apical dendrites of pyramidal neurones from the visual cortex of the rat. Thirty-nine neurones from cortical layers 2/3 and 5, that had been injected with horseradish peroxidase, reconstructed, and measured with the light microscope as part of an earlier study (Larkman and Mason, '90; J. Neurosci. 10:1407-1414), were used. The cells had previously been divided into three classes, layer 2/3 cells and thick and slender layer 5 cells, on the basis of their dendritic morphology. The branching pattern of the basal and apical oblique dendrites was similar for all the cells. Between 3 and 9 basal trees arose from the soma and the number of tips in each tree varied widely, between 1 and 13. The path lengths of all the basal dendrites of a given cell were relatively constant, however. Most basal dendritic branching occurred close to the soma, such that terminal segments were much longer than intermediate segments and contributed approximately 90% of the total dendritic length of each tree. Terminal segments showed only a narrow range of diameters. Most apical oblique trees arose from the proximal part of the apical trunk. They tended to be less highly branched but were otherwise extremely similar to basal trees. Distal oblique trees were unbranched or branched only once, and their terminal segments tended to be shorter and thinner than those of basal trees. The branching pattern of the apical terminal arbors was different, with many longer intermediate segments. The terminal segments tended to be thinner than those of basal or proximal oblique trees. Slender layer 5 cells were without obvious terminal arbors. The basal and proximal oblique dendrites jointly sampled a roughly spherical volume of cortex centred about the soma, and together they accounted for the substantial majority of the cell's total dendritic shaft membrane area. Comparisons with previous studies suggest that intracellular HRP injection can yield a more complete visualization of dendritic morphology than is obtained using Golgi-based methods (unless cells are reconstructed across tissue slabs), and can therefore result in a different view of the relative importance of the various components that make up the cell's dendritic system.
Similar articles
-
Dendritic morphology of pyramidal neurones of the visual cortex of the rat: II. Parameter correlations.J Comp Neurol. 1991 Apr 8;306(2):320-31. doi: 10.1002/cne.903060208. J Comp Neurol. 1991. PMID: 1711058
-
Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry.J Comp Neurol. 1992 Sep 8;323(2):137-52. doi: 10.1002/cne.903230202. J Comp Neurol. 1992. PMID: 1401253
-
Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions.J Comp Neurol. 1991 Apr 8;306(2):332-43. doi: 10.1002/cne.903060209. J Comp Neurol. 1991. PMID: 1711059
-
Network analysis of dendritic fields of pyramidal cells in neocortex and Purkinje cells in the cerebellum of the rat.Philos Trans R Soc Lond B Biol Sci. 1975 May 8;270(906):227-64. doi: 10.1098/rstb.1975.0008. Philos Trans R Soc Lond B Biol Sci. 1975. PMID: 239415 Review.
-
Von Economo Neurons - Primate-Specific or Commonplace in the Mammalian Brain?Front Neural Circuits. 2021 Sep 1;15:714611. doi: 10.3389/fncir.2021.714611. eCollection 2021. Front Neural Circuits. 2021. PMID: 34539353 Free PMC article. Review.
Cited by
-
Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors.Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11567-72. doi: 10.1073/pnas.1006269107. Epub 2010 Jun 7. Proc Natl Acad Sci U S A. 2010. PMID: 20534523 Free PMC article.
-
Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons.J Neurosci. 2009 Sep 23;29(38):11891-903. doi: 10.1523/JNEUROSCI.5250-08.2009. J Neurosci. 2009. PMID: 19776275 Free PMC article.
-
Three-dimensional localization of neurons in cortical tetrode recordings.J Neurophysiol. 2011 Aug;106(2):828-48. doi: 10.1152/jn.00515.2010. Epub 2011 May 25. J Neurophysiol. 2011. PMID: 21613581 Free PMC article.
-
Premature bifurcation of the apical dendritic trunk of vibrissa-responding pyramidal neurones of X-irradiated rat neocortex.J Physiol. 1998 Oct 15;512 ( Pt 2)(Pt 2):543-53. doi: 10.1111/j.1469-7793.1998.543be.x. J Physiol. 1998. PMID: 9763642 Free PMC article.
-
Specialized prefrontal "auditory fields": organization of primate prefrontal-temporal pathways.Front Neurosci. 2014 Apr 16;8:77. doi: 10.3389/fnins.2014.00077. eCollection 2014. Front Neurosci. 2014. PMID: 24795553 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources