Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose
- PMID: 17111138
- DOI: 10.1007/s00253-006-0703-0
Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose
Abstract
A Pseudomonas putida S12 strain was constructed that is able to convert glucose to p-coumarate via the central metabolite L: -tyrosine. Efficient production was hampered by product degradation, limited cellular L: -tyrosine availability, and formation of the by-product cinnamate via L: -phenylalanine. The production host was optimized by inactivation of fcs, the gene encoding the first enzyme in the p-coumarate degradation pathway in P. putida, followed by construction of a phenylalanine-auxotrophic mutant. These steps resulted in a P. putida S12 strain that showed dramatically enhanced production characteristics with controlled L: -phenylalanine feeding. During fed-batch cultivation, 10 mM (1.7 g l(-1)) of p-coumarate was produced from glucose with a yield of 3.8 Cmol% and a molar ratio of p-coumarate to cinnamate of 85:1.
Similar articles
-
Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation.Appl Environ Microbiol. 2009 Feb;75(4):931-6. doi: 10.1128/AEM.02186-08. Epub 2008 Dec 5. Appl Environ Microbiol. 2009. PMID: 19060171 Free PMC article.
-
The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.Appl Microbiol Biotechnol. 2005 Nov;69(2):170-7. doi: 10.1007/s00253-005-1973-7. Epub 2005 Nov 12. Appl Microbiol Biotechnol. 2005. PMID: 15824922
-
Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.J Biotechnol. 2007 Oct 15;132(1):49-56. doi: 10.1016/j.jbiotec.2007.08.031. Epub 2007 Aug 23. J Biotechnol. 2007. PMID: 17900735
-
Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose.Appl Environ Microbiol. 2005 Dec;71(12):8221-7. doi: 10.1128/AEM.71.12.8221-8227.2005. Appl Environ Microbiol. 2005. PMID: 16332806 Free PMC article.
-
Development of a combined biological and chemical process for production of industrial aromatics from renewable resources.Annu Rev Microbiol. 2007;61:51-69. doi: 10.1146/annurev.micro.61.080706.093248. Annu Rev Microbiol. 2007. PMID: 17456010 Review.
Cited by
-
Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing.Appl Environ Microbiol. 2022 Apr 12;88(7):e0243021. doi: 10.1128/aem.02430-21. Epub 2022 Mar 14. Appl Environ Microbiol. 2022. PMID: 35285712 Free PMC article.
-
Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement.Appl Microbiol Biotechnol. 2010 Jun;87(2):679-90. doi: 10.1007/s00253-010-2626-z. Epub 2010 May 7. Appl Microbiol Biotechnol. 2010. PMID: 20449741 Free PMC article.
-
Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae.Appl Environ Microbiol. 2015 Jul;81(13):4458-76. doi: 10.1128/AEM.00405-15. Epub 2015 Apr 24. Appl Environ Microbiol. 2015. PMID: 25911487 Free PMC article.
-
Metabolic engineering of microorganisms for production of aromatic compounds.Microb Cell Fact. 2019 Feb 26;18(1):41. doi: 10.1186/s12934-019-1090-4. Microb Cell Fact. 2019. PMID: 30808357 Free PMC article. Review.
-
TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12.Extremophiles. 2009 Mar;13(2):283-97. doi: 10.1007/s00792-008-0216-0. Epub 2008 Dec 17. Extremophiles. 2009. PMID: 19089528
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources