Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;22(3):191-7.
doi: 10.1007/s11239-006-9030-7.

Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study

Affiliations

Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study

John F Carlquist et al. J Thromb Thrombolysis. 2006 Dec.

Abstract

Background: Warfarin has a narrow therapeutic range and wide inter-individual dosing requirements that may be related to functional variants of genes affecting warfarin metabolism (i.e., CYP2C9) and activity (i.e., vitamin K epoxide reductase complex subunit 1-VKORC1). We hypothesized that variants in these two genes explain a substantial proportion of variability in stable warfarin dose and could be used as a basis for improved dosing algorithms.

Methods: Consecutive consenting outpatients (n = 213) with stable INR (2-3) for >1 month were enrolled. Buccal DNA was extracted using a Qiagen mini-column and CYP2C9*2 and VKORC1 genotyping performed by the Taqman 3' nuclease assay. Sequencing for CYP2C9*3, genotyping was done using Big Dye v3.1 terminator chemistry Dose by genotype was assessed by linear regression.

Results: Weekly warfarin dose averaged 30.8 +/- 13.9 mg/week; average INR was 2.42 +/- 0.72. CYP2C9*2/*3 genotype distribution was: CC/AA (wild-type [WT]) = 71.4%, CT/AA = 18.3%, CC/AC = 9.4%, and CT/AC = 1%; VKORC1 genotypes were CC (WT) = 36.6%, CT = 50.7%, and TT = 12.7%. Warfarin doses (mg/week) varied by genotype: for CYP2C9, 33.3 mg/week for WT (CC/AA), 27.2 mg/week for CT/AA (P = 0.04 vs. WT), 23.0 mg/week for CC/AC (P = 0.003), and 6.0 mg/week for CT/AC (P < 0.001), representing dose reductions of 18-31% for single and 82% for double variant carriers; for VKORC1: 38.4 mg/week for WT (CC), 28.6 mg/week for CT (P < 0.001 vs. WT), 20.95 mg/week for TT (P < 0.001). In multiple linear regression, genotype was the dominant predictor of warfarin dose (P = 2.4 x 10(-15)); weak predictors were age, weight, and sex. Genotype-based modeling explained 33% of dose-variance, compared with 12% for clinical variables alone.

Conclusion: In this large prospective study of warfarin genetic dose-determinants, carriage of a single or double CYP2C9 variant, reduced warfarin dose 18-72%, and of a VKORC1 variant by 65%. Genotype-based modeling explained almost one-half of dose-variance. A quantitative dosing algorithm incorporating genotypes for 2C9 and VKORC1 could substantially improve initial warfarin dose-selection and reduce related complications.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Clin Pharmacol Ther. 1978 Dec;24(6):644-9 - PubMed
    1. Am J Med. 1993 Sep;95(3):315-28 - PubMed
    1. JAMA. 2002 Apr 3;287(13):1690-8 - PubMed
    1. Eff Clin Pract. 2000 Jul-Aug;3(4):179-84 - PubMed
    1. Pharmacogenomics J. 2004;4(1):40-8 - PubMed

MeSH terms