Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan;16(1):73-8.
doi: 10.1007/BF00965831.

Evidence for electrogenic sodium-dependent ascorbate transport in rat astroglia

Affiliations

Evidence for electrogenic sodium-dependent ascorbate transport in rat astroglia

J X Wilson et al. Neurochem Res. 1991 Jan.

Abstract

The dependence of ascorbate uptake on external cations was studied in primary cultures of rat cerebral astrocytes. Initial rates of ascorbate uptake were diminished by lowering the external concentrations of either Ca2+ or Na+. The Na(+)-dependence of astroglial ascorbate uptake gave Hill coefficients of approximately 2, consistent with a Na(+)-ascorbate cotransport system having stoichiometry of 2 Na+:1 ascorbate anion. Raising external K+ concentration incrementally from 5.4 to 100 mM, so as to depolarize the plasma membrane, decreased the initial rate of ascorbate uptake, with the degree of inhibition depending on the level of K+. The depolarizing ionophores gramicidin and nystatin slowed ascorbate uptake by astrocytes incubated in 5.4 mM K+; whereas, the nondepolarizing ionophore valinomycin did not. Qualitatively similar results were obtained whether or not astrocytes were pretreated with dibutyryl cyclic AMP (0.25 mM for 2 weeks) to induce stellation. These data are consistent with the existence of an electrogenic Na(+)-ascorbate cotransport system through which the rate of ascorbate uptake is modulated by endogenous agents, such as K+, that alter astroglial membrane potential.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Carey D. J., Todd M. S. Schwann cell myelination in a chemically defined medium: Demonstration of a requirement for additives that promote Schwann cell extracellular matrix formation. Dev. Brain Res. 1987;32:95–102. - PubMed
    1. Eldridge C. F., Bunge M. B., Bunge R. P., Wood P. M. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 1987;105:1023–1034. - PMC - PubMed
    1. Kaufman S., Friedman S. Dopamine beta-hydroxylase. Pharmacol. Rev. 1965;17:71–107. - PubMed
    1. Kuo C.-H., Hata F., Yoshida H., Yamatodani A., Wada H. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci. 1979;24:911–916. - PubMed
    1. Pinchasi I., Michaelson D. M., Sokolvsky M. Cholinergic nerve terminals contain ascorbic acid which induces Ca2+-dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles. FEBS Lett. 1979;108:189–192. - PubMed

Publication types