Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;40(1):277-87.
doi: 10.1016/0306-4522(91)90190-y.

Mapping the development of the rat brain by GAP-43 immunocytochemistry

Affiliations

Mapping the development of the rat brain by GAP-43 immunocytochemistry

J W Dani et al. Neuroscience. 1991.

Abstract

Growth-associated protein-43 (GAP-43) is a phosphoprotein of the nerve terminal membrane which has been linked to the development and restructuring of axonal connections. Using a monospecific antibody prepared in sheep against purified GAP-43, we examined the temporal and spatial changes in the distribution of this protein from embryonic stage day 13 (E13) to adulthood. At stages in which neurons are still dividing and migrating, levels of GAP-43 are extremely low, as is seen in the cortical plate throughout the embryonic period. With the onset of process outgrowth, intense GAP-43 immunoreactivity appears along the length of axons: by E13, such staining is already strong in the brainstem, where it continues up through the first postnatal week and then disappears. In the neocortex, intense fiber staining first appears several days later but ends at the same time as in the brainstem. At the end of the period of intense axonal staining there is a brief interval in which high levels of GAP-43 immunostaining are seen in the neuropil. In regions of the brain in which specific developmental events have been characterized anatomically and physiologically, the period of dense neuropil staining coincides with the formation of axonal end-arbors, the beginning of synaptogenesis, and the time at which synaptic organization can be modified by the impingent pattern of activity (i.e. the critical period). Over the next few days, staining in neuropil declines sharply in most regions except for certain structures in the rostral neuraxis which may be sites of ongoing synaptic remodeling.

PubMed Disclaimer

Publication types

LinkOut - more resources