Pharmacogenetics of target genes across the warfarin pharmacological pathway
- PMID: 17112295
- DOI: 10.2165/00003088-200645120-00004
Pharmacogenetics of target genes across the warfarin pharmacological pathway
Abstract
Warfarin is a widely prescribed anticoagulant for thromboembolic disorders and exhibits wide inter-individual differences in its pharmacodynamic effects. Warfarin exerts its anticoagulant effect by inhibiting the enzymatic activity of vitamin K 2,3-epoxide reductase complex, subunit 1 (VKORC1) which regenerates reduced vitamin K as an essential cofactor for the post-translational gamma-carboxylation of glutamic acid residues on coagulation factors II, VII, IX and X, and the anticoagulant proteins C, S and Z. Recent studies have shown polymorphisms in genes involved in the uptake of vitamin K (apolipoprotein E [ApoE]), reduction of vitamin K 2,3-epoxide (VKORC1), metabolism of warfarin (cytochrome P450 2C9 [CYP2C9]), and gamma carboxylation (gamma-glutamyl carboxylase [GGCX]) to influence the pharmacokinetics and pharmacodynamics of warfarin in patients from different ethnic backgrounds, resulting in variable warfarin dose requirements. Understanding the causal relationship of these polygenic influences on warfarin dose requirements in patients of different ethnicity may be vital in reducing inter-patient variability and optimising anticoagulant therapy.
Similar articles
-
Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients.Thromb Res. 2007;120(2):181-6. doi: 10.1016/j.thromres.2006.09.007. Epub 2006 Oct 17. Thromb Res. 2007. PMID: 17049586
-
The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement.Thromb Haemost. 2006 May;95(5):782-7. Thromb Haemost. 2006. PMID: 16676068 Clinical Trial.
-
Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements.Clin Pharmacol Ther. 2006 Apr;79(4):291-302. doi: 10.1016/j.clpt.2005.11.011. Epub 2006 Feb 28. Clin Pharmacol Ther. 2006. PMID: 16580898 Clinical Trial.
-
[Possible application of pharmacogenomics to warfarin therapy].Rinsho Byori. 2011 Jun;59(6):594-7. Rinsho Byori. 2011. PMID: 21815482 Review. Japanese.
-
The pharmocogenomics of warfarin: closing in on personalized medicine.Mol Interv. 2006 Aug;6(4):223-7. doi: 10.1124/mi.6.4.8. Mol Interv. 2006. PMID: 16960144 Review.
Cited by
-
QPGx-CARES: Qatar pharmacogenetics clinical applications and research enhancement strategies.Clin Transl Sci. 2024 Jun;17(6):e13800. doi: 10.1111/cts.13800. Clin Transl Sci. 2024. PMID: 38818903 Free PMC article. Review.
-
Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients.Mol Diagn Ther. 2021 Nov;25(6):735-755. doi: 10.1007/s40291-021-00549-z. Epub 2021 Aug 6. Mol Diagn Ther. 2021. PMID: 34357562 Review.
-
Impact of polymorphisms of the GGCX gene on maintenance warfarin dose in Chinese populations: Systematic review and meta-analysis.Meta Gene. 2015 Jun 5;5:43-54. doi: 10.1016/j.mgene.2015.05.003. eCollection 2015 Sep. Meta Gene. 2015. PMID: 26106580 Free PMC article. Review.
-
Extending and evaluating a warfarin dosing algorithm that includes CYP4F2 and pooled rare variants of CYP2C9.Pharmacogenet Genomics. 2010 Jul;20(7):407-13. doi: 10.1097/FPC.0b013e328338bac2. Pharmacogenet Genomics. 2010. PMID: 20442691 Free PMC article.
-
Membrane Cholesterol Modulates Superwarfarin Toxicity.Biophys J. 2016 Apr 26;110(8):1777-1788. doi: 10.1016/j.bpj.2016.03.004. Biophys J. 2016. PMID: 27119638 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous