Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Feb;9(2):245-55.
doi: 10.1089/ars.2007.9.245.

A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity

Affiliations
Review

A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity

Cecilia Hidalgo et al. Antioxid Redox Signal. 2007 Feb.

Abstract

A great body of experimental evidence collected over many years indicates that calcium has a central role in a variety of neuronal functions. In particular, calcium participates in synaptic plasticity, a neuronal process presumably correlated with cognitive brain functions such as learning and memory. In contrast, only recently, evidence has begun to emerge supporting a physiological role of reactive oxygen (ROS) and nitrogen (RNS) species in synaptic plasticity. This subject will be the central topic of this review. The authors also present recent results showing that, in hippocampal neurons, ROS/RNS, including ROS generated by iron through the Fenton reaction, stimulate ryanodine receptor-mediated calcium release, and how the resulting calcium signals activate the signaling cascades that lead to the transcription of genes known to participate in synaptic plasticity. They discuss the possible participation of ryanodine receptors jointly stimulated by calcium and ROS/RNS in the normal signaling cascades needed for synaptic plasticity, and how too much ROS production may contribute to neurodegeneration via excessive calcium release. In addition, the dual role of iron as a necessary, but potentially toxic, element for normal neuronal function is discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources