Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;10(6):237.
doi: 10.1186/cc5069.

Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease

Affiliations
Review

Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease

Alba B Souza-Fernandes et al. Crit Care. 2006.

Abstract

The extracellular matrix (ECM) plays a significant role in the mechanical behaviour of the lung parenchyma. The ECM is composed of a three-dimensional fibre mesh that is filled with various macromolecules, among which are the glycosaminoglycans (GAGs). GAGs are long, linear and highly charged heterogeneous polysaccharides that are composed of a variable number of repeating disaccharide units. There are two main types of GAGs: nonsulphated GAG (hyaluronic acid) and sulphated GAGs (heparan sulphate and heparin, chondroitin sulphate, dermatan sulphate, and keratan sulphate). With the exception of hyaluronic acid, GAGs are usually covalently attached to a protein core, forming an overall structure that is referred to as proteoglycan. In the lungs, GAGs are distributed in the interstitium, in the sub-epithelial tissue and bronchial walls, and in airway secretions. GAGs have important functions in lung ECM: they regulate hydration and water homeostasis; they maintain structure and function; they modulate the inflammatory response; and they influence tissue repair and remodelling. Given the great diversity of GAG structures and the evidence that GAGs may have a protective effect against injury in various respiratory diseases, an understanding of changes in GAG expression that occur in disease may lead to opportunities to develop innovative and selective therapies in the future.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic structure of glycosaminoglycan and proteoglycan. Note that the hyaluronic acid is not linked to a protein core. Heparan sulphate, dermatan sulphate and chondroitin sulphate are connected to proteoglycan via a serine residue.
Figure 2
Figure 2
Extracellular matrix components in lung parenchyma. CS, chondroitin sulphate; DS, dermatan sulphate; HS, heparan sulphate.
Figure 3
Figure 3
Changes in extracellular matrix. Illutrated are changes in the extracellular matrix that occur during hydraulic and lesional oedemas in spontaneous breathing (SB) and physiological and injurious mechanical ventilation (MV) early and late in the course of lung injury. Bold lines represent the new synthesis of heparan sulphate (HS)-proteoglycan (PG) or chondroitin sulphate (CS)-PG. During hydraulic oedema and in the early phase, the prevalent lesion is fragmentation of CS, whereas in the lesional oedema HS is damaged. In physiological MV, mainly CS-PG was fragmented, but the ongoing MV yields the fragmentation of both glycosaminoglycans. During injurious MV, although HS-PG and CS-PG are injured, collagen fibre content increases early and late in the course of lung injury. Thus, we hypothesize that in the early phase of lung injury collagen fibre synthesis could be beneficial in avoiding the rupture of glycosaminoglycans, minimizing interstitial oedema formation. Pi, interstitial pressure; W/D, wet weight:dry weight ratio.

Similar articles

Cited by

References

    1. West JB, Mathieu-Costello O. Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. Annu Rev Physiol. 1999;61:543–572. doi: 10.1146/annurev.physiol.61.1.543. - DOI - PubMed
    1. Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol. 2005;98:1892–1899. doi: 10.1152/japplphysiol.01087.2004. - DOI - PubMed
    1. Rocco PR, Negri EM, Kurtz PM, Vasconcellos FP, Silva GH, Capelozzi VL, Romero PV, Zin WA. Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am J Respir Crit Care Med. 2001;164:1067–1071. - PubMed
    1. Negrini D, Passi A, De Luca G, Miserocchi G. Matrix proteoglycans in development of pulmonary edema. In: Garg HG, Roughley PJ, Hales CA, editor. Proteoglycans in Lung Disease. New York: Marcel Dekker; 2000. pp. 143–168.
    1. Turino GM, Cantor JO. Hyaluronan in respiratory injury and repair. Am J Respir Crit Care Med. 2003;167:1169–1175. doi: 10.1164/rccm.200205-449PP. - DOI - PubMed

Publication types